• Title/Summary/Keyword: AlO

Search Result 8,041, Processing Time 0.034 seconds

Effect of Ethanol as a Dispersant and pH on the Particle Size and Phase Formation in the Synthesis of K+-β"-Al2O3 by Solution State Reaction (액상반응에 의한 K+-β"-Al2O3 합성시 분산첨가제 에탄올과 pH가 입도 및 상형성에 미치는 영향)

  • Cho, Do-Hyung;Kim, Woo-Sung;Shin, Jae-Ho;Lim, Sung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$ in the $K_2O-Li_2O-Al_2O_3$ ternary system was synthesized using aluminum nitrate solution as a starting material. For the synthesis of pure $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$, raw materials with chemical composition of $0.84K_2O{\cdot}0.082Li_2O{\cdot}5.2Al_2O_3$ were mixed in solution state. The effects of dispersant and solution-pH were investigated in minimizing the particle size and on the synthesis of pure $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$. Ethanol was used for a dispersant, and $NH_4OH$ solution and nitric acid were added for pH adjustment. The solution pH was increased from 1.0 to 7.5 by 0.5 increments. Each sample was calcined at $1200^{\circ}C$ for 2 h and characterized with X-ray diffraction and particle size analyzer. The pH of solution significantly effected both particle size and phase formation, while the addition of ethanol only effected particle size. The synthesis of pure $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$ was favored by addition of nitric acid (for pH control).

P123-Templated Co3O4/Al2O3 Mesoporous Mixed Oxides for Epoxidation of Styrene

  • Jung, Mie-Won;Kim, Young-Sil
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.316-320
    • /
    • 2012
  • $Co_3O_4$, $Al_2O_3$ and $Co_3O_4$/$Al_2O_3$ mesoporous powders were prepared by a sol-gel method with starting matierals of aluminum isopropoxide and cobalt (II) nitrate. A P123 template is employed as an active organic additive for improving the specific surface area of the mixed oxide by forming surfactant micelles. A transition metal cobalt oxide supported on alumina with and without P123 was tested to find the most active and selective conditions as a heterogeneous catalyst in the reaction of styrene epoxidation. A bBlock copolymer-P123 template was added to the staring materials to control physical and chemical properties. The properties of $Co_3O_4$/$Al_2O_3$ powder with and without P123 were characterized using an X-ray diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), a Bruner-Emmertt-Teller (BET) surface analyzer, and $^{27}Al$ MAS NMR spectroscopy. Powders with and without P123 were compared in catalytic tests. The catalytic activity and selectivity were monitored by GC/MS, $^1H$, and $^{13}C$-NMR spectroscopy. The performance for the reaction of epoxidation of styrene was observed to be in the following order: [$Co_3O_4$/$Al_2O_3$ with P123-1173 K > $Co_3O_4$/$Al_2O_3$ with P123-973 K > $Co_3O_4$-973 K>$Co_3O_4$/$Al_2O_3$-973 K > $Co_3O_4$/$Al_2O_3$ with P123-1473 K > $Al_2O_3$-973 K]. The existence of ${\gamma}$-alumina and the nature of the surface morphology are related to catalytic activity.

Effect of Doping Amounts of Al2O3 and Discharge Power on the Electrical Properties of ZnO Transparent Conducting Films (ZnO 투명 전도막의 전기적 특성에 미치는 Al2O3 의 도핑 농도 및 방전전력의 효과)

  • Park Min-Woo;Park Kang-Il;Kim Byung-Sub;Lee Se-Jong;Kwak Dong-Joo
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.328-333
    • /
    • 2004
  • Transparent ZnO:Al conductor films for the optoelectronic devices were deposited by using the capacitively coupled DC magnetron sputtering method. The effect of Al doping concentration and discharge power on the electrical and optical properties of the films was studied. The film resistivity of $8.5${\times}$10^{-4}$ $\Omega$-cm was obtained at the discharge power of 40 W with the ZnO target doped with 2 wt% $Al_2$$_O3$. The transmittance of the 840 nm thick film was 91.7% in the visible waves. Increasing doping concentration of 3 wt% $Al_2$$O_3$ in ZnO target results in significant decrease of film resistivity, which may be due to the formation of $Al_2$$O_3$ particles in the as-deposited ZnO:Al film and the reduced ZnO grain sizes. Increasing DC power from 40 to 60 W increases deposition rate by more than 50%, but can induce high defect density in the film, resulting in higher film resistivity.

Fabrication and mechanical properties of $Al/Al_2O_3$ composites by reactive metal penetration method (반응 금속 침투법에 의한 $Al/Al_2O_3$복합체의 제조 및 기계적 특성)

  • 윤영훈;홍상우;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.6
    • /
    • pp.239-245
    • /
    • 2001
  • $Al/Al_2O_3$composites were prepared from the reaction of mullite preforms and amorphous silica in aluminum melt at $1100^{\circ}C$ for 5 hrs. The chemical reaction between mullite preform and aluminum melt has formed the interconnected microstructure. The metal content of $Al/Al_2O_3$composite was controlled with the variable of the apparent porosity according to the sintering temperature of mullite preforms; $1600^{\circ}C$,$ 1625^{\circ}C$, $1650^{\circ}C$ and $1700^{\circ}C$, the mechanical properties of $Al/Al_2O_3$composite were investigated upon the content of Al. The mullite preform sintered above $1600^{\circ}C$ showed the chemical reaction with the penetrated Al melt, but the mullite sintered at $1600^{\circ}C$ didnt react with aluminum melt owing to the non-wetting of Al melt/mullite preform. The influences of penetration direction on the mechanical properties of composites were considered with the two different models of the perpendicular pattern and the parallel pattern to the direction of Al melt penetration. With the increase of Al metal penetration content, the fracture strength of $Al/Al_2O_3$composite decreased and the fracture toughness of composite increased. The microstructure of $Al/Al_2O_3$composite was determined by the direction of metal penetration, but the fracture strength and fracture toughness of composite didnt show the dependence on metal penetration direction.

  • PDF

Properties of Al-doped ZnO Transparent Conducting Oxide Films Deposited with Ar Flow Rate by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 증착된 Al 도핑된 ZnO 투명 전도 산화막의 Ar 유량에 따른 특성)

  • Yi, I.H.;Kim, D.K.;Kim, H.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.206-210
    • /
    • 2010
  • Al-doped ZnO thin films were deposited with various Ar flow rate by RF magnetron sputtering, and theire properties were studied. A high-quality thin film was obtained by controlling the Ar flow rate, and the influence of the Ar flow rate on the Al-doped ZnO thin film was confirmed. In all Al-doped ZnO thin films, light transmittance had above 80%. Through Hall measurement and X-ray photoelectron spectrometer, the sample of 60 sccm, which had the lowest resistivity, showed the lower Al concentration. This result was attributed to oxygen vacancy rather than Al concentration.

Structure and Properties of $LiTaO_3$ Type Solid Solutions in $Li_2O-Al_2O_3-Ta_2O_5$ Ternary System ($Li_2O-Al_2O_3-Ta_2O_5$ 삼성분계에 있어 $LiTaO_3$ 고용체의 구조 및 특성에 관한 연구)

  • 김정돈;흥국선;주기태
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.405-410
    • /
    • 1996
  • The partial substitution of LiTaO3 with Al2O3 caused the variation of dielectric properties and a lower melting temperature yielding an easier growth of single crystal. The lattice constants and Raman band broadening were measured for the LiTaO3 solid solution in which the cations of Li+ and Ta5+ were partially substituted by Al3+ cation. The LiTaO3 type limit phases were obtained. ; Li1.15Al0.45Ta0.7O3 for cationic excess Li1.15Al0.45Ta0.7O3 for stoichiometry Li0.85Al0.05TaO3 for cationic deficit. The second phase was formed beyond the solubility limit. The limit phase (Li0.85Al0.05TaO3) in the region of cationic deficit showed the lowest Cuire temperature of 61$0^{\circ}C$ and melting point of 152$0^{\circ}C$ compared to the solid solutions in other regions (TMp=1$650^{\circ}C$, Tc=69$0^{\circ}C$ for LiTaO3)

  • PDF

Discharge Properties of $Al_2O_3$/MgO as a Dielectric Protection Layer ($Al_2O_3$/MgO 유전체 보호막의 방전특성)

  • Jeoung, Jin-Man;Shin, Kyung;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.307-310
    • /
    • 1998
  • In this paper, $Al_2$O$_3$/MgO belayer was prepared with Electron-beam evaporation and the properties of the film was investigated in order to improve the property of MgO film, which is used for the protection layer in PDP(Plasma Display Panel). $Al_2$O$_3$/MgO belayer were improved of roughness and it were condensed by annealing, and the result of XPS analysis for $Al_2$O$_3$/MgO belayer unchanged binding energy. To investigate electric characteristics, discharge properties of $Al_2$O$_3$/MgO belayer were compared with discharge minimum voltage for MgO monolayer through Ar discharge experiments.

  • PDF

Properties of Al2O3-SiCw Composites Fabricated by Three Preparation Methods (제조방법에 따른 Al2O3-SiCw 복합체의 특성)

  • Lee, Dae-Yeop;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.392-398
    • /
    • 2014
  • $Al_2O_3$-SiC composites reinforced with SiC whisker ($SiC_w$) were fabricated using three different methods. In the first, $Al_2O_3-SiC_w$ starting materials were used. In the second, $Al_2O_3-SiC_w$-SiC particles ($SiC_p$) were used, which was intended to enhance the mechanical properties by $SiC_p$ reinforcement. In the third method, reaction-sintering was used with mullite-Al-C-$SiC_w$ starting materials. After hot-pressing at $1750^{\circ}C$ and 30 MPa for 1 h, the composites fabricated using $Al_2O_3-SiC_w$ and $Al_2O_3-SiC_w-SiC_p$ showed strong mechanical properties, by which the effects of reinforcement by $SiC_w$ and $SiC_p$ were confirmed. On the other hand, the mechanical properties of the composite fabricated by reaction-sintering were found to be inferior to those of the other $Al_2O_3$-SiC composites owing to its relatively lower density and the presence of ${\gamma}-Al_2O_3$ and ${\gamma}-Al_{2.67}O_4$. The greatest hardness and $K_{1C}$ were 20.37 GPa for the composite fabricated using $Al_2O_3-SiC_w$, and $4.9MPa{\cdot}m^{1/2}$ using $Al_2O_3-SiC_w-SiC_p$, respectively, which were much improved over those from the monolithic $Al_2O_3$.

High temperature air-oxidation of CrAlSiN thin films (CrAlSiN 박막의 대기중 고온산화)

  • Hwang, Yeon-Sang;Won, Seong-Bin;Chunyu, Xu;Kim, Seon-Gyu;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.53-54
    • /
    • 2013
  • Nano-multilayered CrAlSiN films consisting of crystalline CrN nanolayers and amorphous AlSiN nanolayers were deposited by cathodic arc plasma deposition. Their oxidation characteristics were studied between 600 and $1000^{\circ}C$ for up to 70 h in air. During their oxidation, the amorphous AlSiN nanolayers crystallized. The formed oxides consisted primarily of $Cr_2O_3$, ${\alpha}-Al_2O_3$, $SiO_2$. The outer $Al_2O_3$ layer formed by outward diffusion of Al ions. Simultaneously, an inner ($Al_2O_3$, $Cr_2O_3$)-mixed layer formed by the inward diffusion of oxygen ions. $SiO_2$ was present mainly in the lower part of the oxide layer due to its immobility. The CrAlSiN films displayed good oxidation resistance, owing to the formation of oxide crystallites of $Cr_2O_3$, ${\alpha}-Al_2O_3$, and amorphous $SiO_2$.

  • PDF

Low Temperature Sintering and Dielectric Properties of Ceramic/glass Composites with CAS-Based glass (CAS계 유리가 첨가된 ceramic/glass 복합체의 소결 및 마이크로파 유전 특성)

  • Kim, Kwan-Soo;Kim, Myung-Soo;Kim, Yun-Han;Kim, Kyung-Joo;Kim, Shin;Yoon, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.195-195
    • /
    • 2008
  • CAS계 유리에 $CaCO_3-Al_2O_3$ 혼합물 및 화합물을 10, 30 wt% 첨가하여 저온 소걸 및 마이크로파 유전 특성을 고찰하였다. CAS계 유리의 연화온도는 $841^{\circ}C$ 이며, CAS계 유리에 $CaCO_3$ 와 30 wt%의 $CaCO_3-Al_2O_3$ 혼합물을 melting되며, 10 wt%의 $CaCO_3$, $Al_2O_3$, $1CaCO_3-1Al_2O_3$ 혼합물 및 $CaAl_2O_4$ 화합물를 10 wt% 첨가하였을 때 $900^{\circ}C$ 이하에서 소걸이 가능하였다. 복합체의 XRD 상 분석 결과, CaCO3를 첨가하였을 때에는 모든 조성이 비정질을 나타내었고, $Al_2O_3$$1CaCO_3-1Al_2O_3$ 혼합물은 $Al_2O_3$ 결정상이 생성되었고, $CaAl_2O_4$ 화합물은 $CaAl_2Si_2O_8$의 hexagonal와 anorthite 결정상이 생성되었다. 따라서 CAS-10 (A, C-A, CA) 복합체는 $900^{\circ}C$에서 각각 유전율 ($\varepsilon_r$) 6.4, 6.9, 5.15 와 품질계수 ($Q^*f$) 2,400, 1,500, 3,000의 마이크로파 유전 특성을 나타내어 LTCC 기판 재료로 사용이 가능하며, 특히 $CaAl_2O_4$ 화합물을 사용하였을 때 가장 우수한 유전 특성을 나타내는 것을 확인하였다.

  • PDF