• Title/Summary/Keyword: AlO

Search Result 8,041, Processing Time 0.032 seconds

Control of Microstructures and Properties of Composites of the Al2O3/ZrO2-ZrO2-Spinel System: I. Preparation and Sintering Behavior of Al2O3-ZrO2 Composite Powders (Al2O3/ZrO2-Spinel계 복합체의 미세구조 및 물성제어: I. Al2O3-ZrO2 복합분체의 제조 및 소결특성)

  • 현상훈;송원선
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.797-805
    • /
    • 1992
  • Al2O3-20 wt% ZrO2 composite powders to be used as the starting materials of the Al2O3/ZrO2-Spinel composite system were prepared by the use of the emulsion-hot kerosene drying method. The crystalline phase of ZrO2 in the synthesized Al2O3-ZrO2 composite powders was 100% tetragonal but the small amount of t-ZrO2 was transformed into m-ZrO2 after crushing. The hardness, fracture toughness, and flexural strength of the composite, which was sintered at 1650$^{\circ}C$ for 4 hrs after calcining at 1100$^{\circ}C$ for 2 hrs and had the relative density of 99%, were 15.7 GPa, 4.97 MN/m3/2, and 390 MPa, respectively. The fracture form in the sintered composites was found to be the intergranular fracture.

  • PDF

A Study on the Thermal Stability of an Al2O3/SiON Stack Structure for c-Si Solar Cell Passivation Application (결정질 실리콘 태양전지의 패시베이션 적용을 위한 Al2O3/SiON 적층구조의 열적 안정성에 대한 연구)

  • Cho, Kuk-Hyun;Chang, Hyo Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.197-200
    • /
    • 2014
  • We investigated the influence of blistering on $Al_2O_3$/SiON stacks and $Al_2O_3$/SiNx:H stacks passivation layers. $Al_2O_3$ film provides outstanding Si surface passivation quality. $Al_2O_3$ film as the rear passivation layer of a p-type Si solar cell is usually stacked with a capping layer, such as $SiO_2$, SiNx, and SiON films. These capping layers protect the thin $Al_2O_3$ layer from an Al electrode during the annealing process. We compared $Al_2O_3$/SiON stacks and $Al_2O_3$/SiNx:H stacks through surface morphology and minority carrier lifetime after annealing processes at $450^{\circ}C$ and $850^{\circ}C$. As a result, the $Al_2O_3$/SiON stacks were observed to produce less blister phenomenon than $Al_2O_3$/SiNx:H stacks. This can be explained by the differences in the H species content. In the process of depositing SiNx film, the rich H species in $NH_3$ source are diffused to the $Al_2O_3$ film. On the other hand, less hydrogen diffusion occurs in SiON film as it contains less H species than SiNx film. This blister phenomenon leads to an increase insurface defect density. Consequently, the $Al_2O_3$/SiON stacks had a higher minority carrier lifetime than the $Al_2O_3$/SiNx:H stacks.

Study on the Properties of $B_2O_3$-$SiO_2$and $Al_2O_3$-$SiO_2$Coating Films by the Sol-Gel Method (Sol-Gel법으로 제조한 $B_2O_3$-$SiO_2$$Al_2O_3$-$SiO_2$ 박막의 특성에 관한 연구)

  • 황규석;김병훈;최석진
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.583-588
    • /
    • 1990
  • Glass films in the binary system B2O3-SiO2 and Al2O3-SiO2 were prepared on soda-lime-silica slide glass by the dip-coating technique from TEOS and boric acid or aluminum nitrate. Thickness of the films varying with viscosity and withdrawal speed were measured and effect of composition and firing temperature on the properties such as transmittance and refractive index were investigated. nM2O3.(100-n)SiO2(M=B or Al) films containing up to 20mol% B2O3 and 40mol% Al2O3 were transparent. Maximum transmittance at visible range were obtained for the sample containing 15mol% Ba2O3 and 32.5mol% Al2O3 and heat-treated at 50$0^{\circ}C$, respectively. Refractive index of the film containing 15mol% B2O3 was mininum in the B2O3-SiO2 binary system and minimal refractive index was appeared at the film containing 32.5mol% Al2O3. In IP spectra, addition of B2O3 were increased absorption peak intensity of B-O and Si-O-B bond and addition of Al2O3 were decreased absorption peak intensity of Si-O bond, respectively.

  • PDF

Mechanical properties of $Al_2O_3/Mo/MnO_2$ composite ($Al_2O_3/Mo/MnO_2$ 복합재료의 기계적 특성)

  • Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.172-179
    • /
    • 2006
  • When $Al_2O_3-MoO_3$ mixture is reduced, $MoO_3$ is only reduced to Mo at $900^{\circ}C$. But a compound between $Al_2O_3$ and Mo is not formed up to $1300^{\circ}C$. In the case of $Al_2O_3-MoO_3-MnO_2$ mixture, an intermediate compound $Mn_2Mo_3O_8$ is firstly formed at $900^{\circ}C$ and changes to $MnAl_2O_4$ at $1100^{\circ}C{\sim}1300^{\circ}C$. $Al_2O_3/Mo/MnO_2$ composite are manufactured by a selective reduction process in which Mo is only reduced in the powder mixture of $Al_2O_3,\;MoO_3\;and\;MnO_2$ oxide. For $Al_2O_3/Mo$ composite, the average grain size was not changed with increasing Mo content because of inhibition of grain growth of $Al_2O_3$ matrix in the presence of Mo particles. Fracture strength increased with increasing Mo content due to phenomenon of grain growth inhibition of $Al_2O_3$ matrix. Hardness decreased because of a lower hardness value of Mo, whereas fracture toughness increased. For $Al_2O_3,\;Mo\;and\;MnO_2$ composite, grain growth was facilitated by MnOB and it showed a lower fracture strength because of grain growth effect with increasing Mo and $MnO_2$ content. Hardness decreased because of the grain growth of matrix and coalesced Mo particles to be located in grain boundary, whereas fracture toughness increased.

Organic Light Emitting Diodes with $Al_2O_3/Al$ cathode ($Al_2O_3/Al$ 음극을 이용한 유기발광다이오드)

  • Seo, Yu-Suk;Park, Hoon;Shin, Dong-Seop;Yu, Hee-Sung;Chae, Hee-Baik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.335-338
    • /
    • 2006
  • 전자수송층과 음극 사이에 $Al_2O_3$를 넣은 이중구조 음극을 갖는 유기발광다이오드를 제작하였다. 제작한 디바이스의 구조는 $ITO/NPB(40\;nm)/Alq_3(60\;nm)/Al_2O_3(0-1.5\;nm)/Al(120\;nm)$$Al_2O_3$의 두께를 변화시켰다. $Al_2O_3$의 두께가 0.3 nm일 때는 터널링에 의해서 전자주입이 증가하여 전류와 휘도가 모두 좋아졌다. 반면에 $Al_2O_3$의 두께가 0.5 nm일 때는 전류는 감소하지만 정공과 전자의 비율이 더 좋아져서 전류효율이 크게 향상되었다. 또한 $Al_2O_3$는 엑시톤이 음극과의 계면에서 발광하지 않고 소멸하는 것을 막아주어서 휘도를 증가시켰다.

  • PDF

Ammonia Conversion in the Presence of Precious Metal Catalysts (귀금속촉매하에서 암모니아의 전환반응)

  • Jang, Hyun Tae;Park, YoonKook;Ko, Yong Sig
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.806-812
    • /
    • 2008
  • The ammonia decomposition reaction has been of increasing interest as a means of treating ammonia in flue gas in the presence of precious metal catalyst. Various catalysts, $Pt-Rh/Al_2O_3$, $Pt-Rh/TiO_2$, $Pt-Rh/ZrO_2$, $Pt-Pd/Al_2O_3$, $Pd-Rh/Al_2O_3$, $Pd-Rh/TiO_2$, $Pd-Rh/ZrO_2$, $Pt-Pd-Rh/Al_2O_3$, $Pd/Ga-Al_2O_3$, $Rh/Ga-Al_2O_3$, and Ru/Ga-$Al_2O_3$, were synthesized by using excess wet impregnation method. Using a homemade 1/4" reactor at $10,000{\sim}50,000hr^{-1}$ of space velocity in the presence of precious metal catalyst ammonia decomposition reactions were carried out to investigate the catalyst activity. The inlet ammonia concentration was maintained at 2,000 ppm, with an air balance. Both $T_{50}$ and $T_{90}$, defined as the temperatures where 50% and 90% of ammonia, respectively, are converted, decreased significantly when alumina-supported catalysts were applied. In terms of catalytic performance on the ammonia conversion in the presence of hydrogen sulfide, $Pt-Rh/Al_2O_3$ catalyst showed no effect on the poisoning caused by hydrogen sulfide. These results indicate that platinum-rhodium bimetallic catalyst is a useful catalyst for ammonia decomposition.

A Study on the Fabrication of Shrinkage-Free Mullite--$ZrO_2$ Ceramics with Al-Additives (Al첨가에 의한 무수축 Mullite-$ZrO_2$ 요업체의 제조에 관한 연구)

  • Kim, Jeong-Uk;Kim, Il-Su
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.888-896
    • /
    • 1995
  • In this paper the manufacture of shrinkage-free in situ Mullite-ZrO$_2$ceramics through the addition of Al base metal powder to the mixture of ZrSiO$_4$and A1$_2$O$_3$was attempt. The ZrO$_2$-strengthened mullite ceramics was prepared after the following reaction form, 3(Al+Al$_2$O$_3$)+2ZrSiO$_4$longrightarrow3A1$_2$O$_3$.2SiO$_2$+2ZrO$_2$Al metal powder was added from none to 30 weight percent to the A1$_2$O$_3$. The powders were mechanically mixed, isostatically pressed and reaction sintered at 1450-1$600^{\circ}C$ for 3hours. The specimens were sintered with and without intrim soaking time for 5 hours at 125$0^{\circ}C$ for the oxidation of Al-powder The addition of aluminium accelerates the reaction and compensate the shrinkage during the sintering through an increase in volume of oxidized Al. Because coarse flake type Al metal powders were not effectively milled, oxidized Al resulted in the relative large pore in the specimen.

  • PDF

Effects of ${ZnAl_2}{O_4}$ on the Microstructure and Electrical Properties of ZnO Varistor (ZnO 바리스터의 미세구조와 전기적특성에 미치는 ${ZnAl_2}{O_4}$의 영향)

  • 손세구;김경남;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.314-319
    • /
    • 2000
  • Microstructueral development and electrical properties in ZnO-Bi2O3-ZnAl2O4 system were investigated with ZnAl2O4 content(0.1~1.0 mol%). The shrinakge of specimens started around $700^{\circ}C$ and finished at 110$0^{\circ}C$, reaching a maximum shrinkage rate at 80$0^{\circ}C$. The shrinkage rate is strongly related to the fromation of a Bi-rich liquid. The increase of the ZnAl2O4 content inhibited the grain growth of ZnO. Most of ZnAl2O4 particles located at the grain boundaries were about 2~3${\mu}{\textrm}{m}$. ZnO grain size changed little up to 110$0^{\circ}C$, but increased markedly above 115$0^{\circ}C$, especially at lower ZnAl2O4 content. Drastic decreasing in breakdown voltage(Vb) with increasing temperature is expected to be dependent on the ZnO grain size and the distribution of the largest grains between the electrode. The nonlinear I-V characteristic was significantly influenced by the ZnAl2O4 content, which exhibited a maximum value at about 15${\mu}{\textrm}{m}$ of ZnO grain size.

  • PDF

Fabrication and Characteristics of $Al_2O_{3p}$/AC8A Composites by Pressureless Infiltration Process (무가압함침법에 의한 $Al_2O_{3p}$/AC8A 복합재료의 제조 및 특성)

  • 김재동;고성위;정해용
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2000
  • The fabrication Process of $Al_2O_{3p}$/AC8A composites by pressureless infiltration technique and the effects of additive Mg content and volume fraction of particulate reinforcement on mechanical and wear properties were investigated. It was found that the bending strength decreased with increasing volume fraction of $Al_2O_{3p}$ particles. Whereas hardness increased with volume fraction of $Al_2O_{3p}$ particles. The decrement of strength in case of high volume fraction of $Al_2O_{3p}$ particles was attributed to high porosity level. In terms of additive Mg content, $Al_2O_{3p}$/AC8A composites containing around 5~7wt% of additive Mg indicated the highest strength, and hardness values increased with additive Mg contents. Wear resistance of AC8A alloy were improved by reinforcement of $Al_2O_{3p}$ particles especially at high sliding velocity. Wear property of $Al_2O_{3p}$/AC8A composites and AC8A alloy exhibited different aspects. $Al_2O_{3p}$/AC8A composites indicated more wear loss than AC8A alloy at slow velocity region. However a transition point of wear loss was found at middle velocity region which shows the minimum wear loss and wear loss at high velocity region exhibited almost same value as at slow velocity region, whereas wear loss of AC8A alloy almost linearly increased with sliding velocity. It was found that $Al_2O_{3p}$/AC8A composites containing $Al_2O_{3p}$ volume fraction of 20% exhibited abrasive wear surface regardless of sliding velocity and $Al_2O_{3p}$/AC8A composites containing $Al_2O_{3p}$ volume fraction of 40% showed slightly adhesive wear surface at low sliding velocity, and it progressed to severe wear as increasing the sliding velocity.

  • PDF

Effects of Crystallization and Seeding on Characteristics of Al2O3-ZrO2 Powder Prepared by a Sol-Gel Method (Sol-Gel법에 의한 Al2O3-ZrO2계 분말제조에 있어서 결정화 및 Seeding 효과)

  • 오한석;홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.373-379
    • /
    • 1988
  • $\alpha$-Al2O3-15m/o ZrO2 powder was prepared by a sol-gel method from boehmite and zirconium acetate. The transformation temperature of boehmite to $\alpha$-Al2O3 in the system Al2O3-ZrO2 was increased due to the coupled crystallization. On the other hand, the transformation temperature from boehmite to $\alpha$-Al2O3-15m/o ZrO2 could be prepared at 110$0^{\circ}C$ for 100min. The specific surface area of the product of $\alpha$-Al2O3-15m/o ZrO2 was 13.2$m^2$/g.

  • PDF