• Title/Summary/Keyword: Al-segregation

Search Result 97, Processing Time 0.036 seconds

Novel Synthesis and Nanocharacterization of Graphene and Related 2D Nanomaterials Formed by Surface Segregation

  • Fujita, Daisuke
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.60-60
    • /
    • 2015
  • Nanosheets of graphene and related 2D materials have attracted much attention due to excellent physical, chemical and mechanical properties. Single-layer graphene (SLG) was first synthesized by Blakely et al in 1974 [1]. Following his achievements, we initiated the growth and characterization of graphene and h-BN on metal substrates using surface segregation and precipitation in 1980s [2,3]. There are three important steps for nanosheet growth; surface segregation of dopants, surface reaction for monolayer phase, and subsequent 3-D growth (surface precipitation). Surface phase transition was clearly demonstrated on C-doped Ni(111) by in situ XPS at elevated temperatures [4]. The growth mode was clarified by inelastic background analysis [5]. The surface segregation approach has been applied to C-doped Pt(111) and Pd(111), and controllable growth of SLG has been demonstrated successfully [6]. Recently we proposed a promising method for producing SLG fully covering an entire substrate using Ni films deposited on graphite substrates [7]. A universal method for layer counting has been proposed [8]. In this paper, we will focus on the effect of competitive surface-site occupation between carbon and other surface-active impurities on the graphene growth. It is known that S is a typical impurity of metals and the most surface-active element. The surface sites shall be occupied by S through surface segregation. In the case of Ni(110), it is confirmed by AES and STM that the available surface sites is nearly occupied by S with a centered $2{\times}2$ arrangement. When Ni(110) is doped with C, surface segregation of C may be interfered by surface active elements like S. In this case, nanoscopic characterization has discovered a preferred directional growth of SLG, exhibiting a square-like shape (Fig. 1). Also the detailed characterization methodologies for graphene and h-BN nanosheets, including AFM, STM, KPFM, AES, HIM and XPS shall be discussed.

  • PDF

The Effects of Wnt Signaling on Neural Crest Lineage Segregation and Specification (Wnt signaling이 neural crest lineage segregation과 specification에 미치는 영향)

  • Song, Jin-Su;Jin, Eun-Jung
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1346-1351
    • /
    • 2009
  • Recent evidence has shown that many pluripotetic neural crest cells are fate-restricted and that different fate-restricted crest cells emigrate from the neural tube at different times. Jin et al. (2001) identified the expression patterns of Wnts and its antagonists at the time that neural crest cells were being specified and suggested that Wnt signaling was involved in the segregation/differentiation of neural crest cells in the trunk in vitro. In this study, we evaluated the effects of Wnt signaling in avian neural crest lineage segregation. To accomplish this, Wnt signaling was disturbed at the time of neural crest segregation and differentiation by grafting Wnt-3a expressing cells and conducting dominant negative glycogen synthase kinase (dnGSK) electroporation. Stimulation of Wnt signaling induced neural crest lineage segregation and melanoblast specification, and increased the expression levels of genes known to be involved in neural crest development such as cadherin 7 and Slug, which suggests that they are involved in Wnt-induced neural crest lineage differentiation into melanoblasts.

The Effect of Gate Shape for Semi-Solid Forging Die on the Filling Limitation (반용융 단조금형의 Gate 형상이 성형성에 미치는 영향)

  • Son Y. I.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.178-184
    • /
    • 2000
  • To obtain high quality component with thixoforming process, it is important that the homegeneous distribution of solid particles without liquid segregation. In closed-die semi-solid forging process, liquid segregation is strongly affected by injection velocity than any other process variables because the material has to travel relatively long distance to fill the cavity through a narrow gate before solidification begins. The optimal injection velocity and die temperature were investigated to fabricate near-net-shape compressor component called Al frame.

  • PDF

A Study on the Homogeneity of Powder Mixture (분말약품 혼합의 균일성에 관한 연구)

  • 김길수;이민화
    • YAKHAK HOEJI
    • /
    • v.21 no.2
    • /
    • pp.95-100
    • /
    • 1977
  • The effects of the particle size on the homogeneity of mixing and segregation of caffeine-lactose (1:99) mixture were studied. Using the two kinds of caffein, milled and unmilled caffein, V-type blender, the degree of mixing according to the particle size was predicted and the experiment on the change of mixedness by mixing time was carried out by the method derived from mixing index theory by Poole et al. and Hersey. the results could be summarized as follows; (1) The homogeneity of mixing was greatly affected by the particle size and the particle size should be reduced to the adepuate level to attain the desirable mixedness. (2) The homogeneity was not proportional to the mixing time and optimum mixing time for caffein-lactose was about 10 minutes. (3) Segregation tendency was increased by the particle size increase and greatly affected by the flow time in the segregation cell.

  • PDF

Optical and Electrical Properties of Al-doped ZnO Thin Films Fabricated by Sol-gel Method with Various Al Doping Concentrations and Annealing Temperatures (Sol-gel 법으로 제작한 Al-doped ZnO 박막의 도핑 농도 및 열처리 온도에 따른 광학적 및 전기적 특성)

  • Shin, Hyun-Ho;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.5
    • /
    • pp.1-7
    • /
    • 2007
  • AZO thin films have been fabricated on quartz substrate with various Al doping concentrations and annealing temperatures by sol-gel method. The bset condition of (002) orientation and smooth surface (rms = 1.082 nm) is obtained for the AZO thin film doped with 1 mol % Al and annealed at 550 $^{\circ}C$. The optical transmittance of AZO thin films is higher than 80 % in the visible region. We observe that the energy band gap extends with increasing the Al doping concentration. This phenomenon is due to the Burstein-Moss effect. Through the measurement of Hall effect, it is observed that the AZO thin film has larger carrier concentration and smaller electrical resistivity than the pure ZnO thin film. However, the AZO thin film shows the decrease of carrier concentration and the increase of resistivity with the increase of Al concentration, that is due to the segregation of Al at grain boundaries. The maximum carrier concentration of $1.80{\times}10^{19}\;cm^{-3}$ and the minimum resistivity of 0.84 ${\Omega}cm$ are obtained for the AZO thin film doped with 1 mol % Al and annealed at 550 $^{\circ}C$.

Properties of Al2O3-15v/o ZrO2(+3m/o Y2O3) Powder Prepared by Co-Precipitation Method (공침법으로 제조한 Al2O3-15v/o ZrO2(+3m/o Y2O3)계 분말의 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.210-220
    • /
    • 1989
  • The properties of the powder of Al2O3-15v/o ZrO2(+3m/o Y2O3) system prepared by co-precipitation method at the pH values of 7, 9, 10 and 11 were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Zirconium hydroxide decreased the specific surface area of aluminum hydroxide of AlOOH type, while increased the specific surface area of aluminum hydroxide of Al(OH)3 type, and formed co-network structure of Al-O-Zr type with the aluminum hydroxides. The rate of transition to $\alpha$-Al2O3 from co-precipitated materials occurred in the order of 7≒10, 9 and 11 of pH values. Al2O3 and ZrO2 interacted to bring about coupled grain growth, and the growth of ZrO2 crystallite size rapidly occurred within $\theta$-Al2O3 matrix. Segregation did not occur in the system Al2O3-15v/o ZrO2(+3m/o Y2O3) and Y2O3 acted as a stabilizer to ZrO2. The lattice strain of tetragonal ZrO2 was increased by the constraint effect of Al2O3 matrix.

  • PDF

A Study on the Gravity Segregation in Monotectic Al Alloys.(I);The Effect of Melting Treatment on the Distribution of Pb, Bi Particles. (Al계 편정합금의 중력 편석에 관한 연구 (I);Pb, Bi 입자의 분산에 미치는 용탕처리의 영향)

  • Hwang, Ho-Eul;Lee, Jai-Ha;Jung, Sung-In;Choe, Jeong-Cheol;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.10 no.4
    • /
    • pp.316-323
    • /
    • 1990
  • To improve free-cutting property, fine Pb, Bi particles is necessary to be distributed evenly in Al-Cu alloy. The control of added element size and distribution are very difficult because of the insolubility and gravity segregation of Pb, Bi in the matrix. Therefore, in this study, mechanical stirring of the melt, inert gasbubbling, the addition of degasser are used for the fine distribution of Pb, Bi particles. The best distribution are obtained by stirring with 500 rpm for 10min., Ar gas bubbling with 600cc/min for 5min. and degassing with 0.8wt% degasser. As increasing cooling rate, fine grain size and finely dispersed particles were observed. The optimum pouring temperature was $650^{\circ}C$.

  • PDF

Microstructural Features of Al Alloy 7N01 Welded by $CO_2$ Laser - Microsturctural Features of Full Penetration Joints - ($CO_2$ 레이저 용접한 7N01 Al합금의 미세조직 특징(I) - 완전용입 용접부의 미세조직 -)

  • 윤재정;강정윤;김인배;김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.429-436
    • /
    • 2001
  • The effect of welding condition on the microstructures of the weld metal in A7N01 welded by $CO_2$ laser was investigated. The number of ripples was increased with decreasing power and increasing welding speed. In the bead without ripple lines, the subgrain microstructures distribution from the fusion line toward the center of the bead were in the order of cellular, dendritic and equiaxed dendrite. However, in the bead with ripple lines, cellular and dendritic were formed between the fusion boundary and the ripple line. Inaddition, those structures were also observed between the ripple line. Equiaxed dendrites were formed only at the center line region. Cellular and dendritics formed near the ripple line were larger than those formed near the fusion boundary. The cooling rates estimated by the dendrite arm spacing were in the range of 200 to 1150oC/s. Cooling rate was increased with decreasing the power and increasing the welding speed. Mg and Zn segregated at the boundaries of cellulars and dendritics, Mg was segregated more than Zn. The segregation of Mg and Zn decreased with increasing cooling rate. Hardness of the weld metal was lower than that of the base metal in all welding conditions and increased as the cooling rate increased.

  • PDF

A Study on Fabrication of Al-Cu alloy bar by Melt-extrusion Process (용탕압출법에 의한 Al-Cu 합금 선재의 제조에 관한 연구)

  • Joo, Dae-Heon;Lee, Byoung-Soo;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.24 no.6
    • /
    • pp.331-339
    • /
    • 2004
  • Melt-extrusion process, a metallic melt poured and solidified up to semisolid state in the container can be directly extruded through the die exit to form a product of bar shape without other intermediate processes. In this study, the fabrication characteristics of the process were evaluated with various process parameters, such as preheating temperature of extrusion dies, extrusion temperature and extrusion ratio. AI-Cu alloys were successfully extruded after squeezing out of liquid during melt-extrusion with smaller force compared to the solid extrusion. Soundly AI-Cu alloy bar was fabricated at the preheating temperature of $500{\sim}520^{\circ}C$. The range of extrusion temperature for soundly melt-extruded AI-Cu alloy bar was increased with increasing extrusion ratio. Mechanical properties of melt-extruded AI-Cu alloy bars were found change with Cu content of the melt-extruded bars due to the occurrence of segregation. The various extrusion temperature yielded equiaxed structure with a grains size about 200 ${\mu}m$.

The Effect of Velocity Control Method on the Part Characteristic in Semi-Solid Die Casting (반용융 다이캐스팅 공정에 있어서 속도제어방법이 제품의 특성에 미치는 영향)

  • Seo, Pan-Ki;Kang, Chung-Gil;Son, Young-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2034-2043
    • /
    • 2002
  • The process design to produce a near net shape home-appliance compressor component using semi-solid die casting process is performed. In order to obtain a good component without defects such as liquid segregation and porosity, the relationship between pressure and time, and plunger tip displacement and injection velocity are proposed with repeated trial and error. The effect of the velocity variation in the process parameters on liquid segregation and extraction is investigated to produce the aluminum frame part(a kind of compressor part) with good mechanical properties. The mechanical characteristic of semi-solid die casting formed parts for AlSi7Mg0.65r(A357) and AlSi17Cu4Mg(A390) are investigated with a view to minimizing the occurrence of defects. To investigate of application possibility at industry field, A380 aluminum alloy with 8∼9% silicon contents used for the squeeze casting process. The obtained mechanical properties is compared with semi-solid die casting.