• Title/Summary/Keyword: Al-doped ZnO films

Search Result 249, Processing Time 0.041 seconds

Characteristics of Al-doped, Ga-doped or In-doped zinc-oxide films as transparent conducting electrodes in OLED (Al, Ga, In 을 첨가한 ZnO 박막을 사용하여 제작된 OLED 소자 특성)

  • Park, Se-Hun;Park, Ji-Bong;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.175-175
    • /
    • 2009
  • AZO, GZO, ZIO 박막은 DC 마그네트론 법으로 각각의 소결체 타겟을 사용하여 유리 기판위에 증착되었다. 상온에서 증착된 GZO 박막의 경우 $1.61{\times}10^{-3}{\Omega}cm$ 의 가장 낮은 비저항을 나타내었다. 전기적 특성을 향상시키기 위하여 기판온도를 상승하였을 때 역시 GZO 박막이 가장 낮은 $6.413{\times}10^{-4}{\Omega}cm$ 을 나타내었다.

  • PDF

Conformal coating of Al-doped ZnO thin film on micro-column patterned substrate for TCO (TCO 응용을 위한 패턴된 기판위에 증착된 AZO 박막의 특성 연구)

  • Choi, M.K.;Ahn, C.H.;Kong, B.H.;Cho, H.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.28-28
    • /
    • 2009
  • Fabrications of antireflection structures on solar cell were investigated to trap the light and to improve quantum efficiency. Introductions of patterned substrate or textured layer for Si solar cell were performed to prevent reflectance and to increase the path length of incoming light. However, it is difficult to deposit conformally flat electrode on perpendicular plane. ZnO is II-VI compound semiconductor and well-known wide band-gap material. It has similar electrical and optical properties as ITO, but it is nontoxic and stable. In this study, Al-doped ZnO thin films are deposited as transparent electrode by atomic layer deposition method to coat on Si substrate with micro-scale structures. The deposited AZO layer is flatted on horizontal plane as well as perpendicular one with conformal 200 nm thickness. The carrier concentration, mobility and resistivity of deposited AZO thin film on glass substrate were measured $1.4\times10^{20}cm^{-3}$, $93.3cm^2/Vs$, $4.732\times10^{-4}{\Omega}cm$ with high transmittance over 80%. The AZO films were coated with polyimide and performed selective polyimide stripping on head of column by reactive ion etching to measure resistance along columns surface. Current between the micro-columns flows onto the perpendicular plane of deposited AZO film with low resistance.

  • PDF

Transparent Anodic Properties of In-doped ZnO thin Films for Organic Light Emitting Devices (In 도핑된 ZnO 박막의 투명 전극과 유기 발광 다이오드 특성)

  • Park, Young-Ran;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.303-307
    • /
    • 2007
  • Transparent In-doped zinc oxide (IZO) thin films are deposited with variation of pulsed DC power at Ar atmosphere on coming 7059 glass substrate by pulsed DC magnetron sputtering. A c-axis oriented IZO thin films were grown in perpendicular to the substrate. The optical transmittance spectra showed high transmittance of over 80% in the UV-visible region and exhibited the absorption edge of about 350 nm. Also, the IZO films exhibited the resistivity of ${\sim}10^{-3}{\Omega}\;cm$ and the mobility of ${\sim}6cm/V\;s$. Organic Light-emitting diodes (OLEDs) with IZO/N,N'-diphenyl-N, N'-bis(3-methylphenl)-1, 1'-biphenyl-4,4'-diamine (TPD)/tris (8-hydroxyquinoline) aluminum ($Alq_3$)/LiF/Al configuration were fabricated. LiF layer inserted is used as an interfacial layer to increase the electron injection. Under a current density of $100\;mA/cm^2$, the OLEDs show an excellent efficiency (9.4 V turn-on voltage) and a good brightness ($12000\;cd/m^2$) of the emission light from the devices. These results indicate that IZO films hold promise for anode electrodes in the OLEDs application.

Characterization of Al:ZnO thin films deposited at different oxygen pressure (산소 분위기압의 변화에 따른 Al:ZnO 박막의 특성)

  • No, I.J.;Kim, Il;Shin, P.K.;Song, J.H.;Kim, Y.W.;Kim, C.Y.;Jeung, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1349-1350
    • /
    • 2007
  • Epitaxial thin films of aluminum-doped zinc oxide (AZO) have been deposited on commercial corning glass using an Nd:YAG pulsed laser deposition technology. The structural, electrical and optical properties of these films were investigated as a function of oxygen pressure. The experimental results show that the electrical resistivity of films deposited at 5 mTorr with substrate temperature of $300^{\circ}C$ were $4.633{\times}10^{-4}$. The average transmission of AZO thin films in the visible range were over 90%.

  • PDF

Work function engineering on transparent conducting ZnO thin films

  • Heo, Gi-Seok;Hong, Sang-Jin;Park, Jong-Woon;Choi, Bum-Ho;Lee, Jong-Ho;Shin, Dong-Chan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1706-1707
    • /
    • 2007
  • A possibility of work function engineering on ZnO thin film is studied by in-situ and ex-situ doping process. The work function of ZnO thin film decreases with increasing boron and phosphorus doping quantity. But, the work function of Al-doped ZnO (AZO) thin film increases as the boron doping quantity incresess. The range of work function change on ZnO thin films is 3.5 eV to 5.5 eV. This result shows that the work function of ZnO thin film is indeed engineerable by changing materials of dopants and their compositional distribution of surface. We also discuss the possible mechanism of work function engineering on ZnO thin films.

  • PDF

The post annealing effect on the properties of AZO films (AZO 박막의 후 열처리에 따른 특성변화)

  • Ko, Ki-Han;Seo, Jae-Keun;Kim, Jae-Kwang;Cho, Hyung-Jun;Hong, Byung-You;Choi, Won-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.457-458
    • /
    • 2009
  • In this work, transparent conducting Al-doped zinc oxide (AZO) films were prepared on Coming glass substrate by RF magnetron sputtering using an Al-doped ZnO target (Al: 2 wt.%) at room temperature and all films were deposited with athickness of 150 nm. We investigated the effects of the post-annealing temperature and the annealing ambient on structural, electrical and optical properties of AZO films. The films were annealed at temperatures ranging from 300 to $500^{\circ}C$ in steps of $100^{\circ}C$ using rapid thermal annealing equipment in oxygen. The thickness of the film was observed by field emission scanning electron microscopy (FE-SEM) and grain size was calculated from the XRD spectra using the Scherrer equation and their electrical properties were investigated using a hole measurement and the reflectance of AZO films was investigated by UV-VIS spectrometry.

  • PDF

The effect of the working pressure on electro-optical properties of aluminium-doped zinc oxide thin film

  • Bang, Bo-Rae;Koo, Hong-Mo;Moon, Yeon-Keon;Kim, Se-Hyun;Park, Jong-Wan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1526-1529
    • /
    • 2005
  • Zinc oxide films have been actively investigated as transparent electrode materials for display. We report the effect of the working pressures on electro-optical properties of Al-doped ZnO thin films deposited by d.c. magnetron sputtering. The resistivity of the ZnO thin films was depended on atomic bombardment effect by working pressure.

  • PDF

Field Emission Property of ZnO Nanowire with Nanocone Shape (나노뿔 형태로 제작된 ZnO 나노선의 전계방출 특성)

  • No, Im-Jun;Shin, Paik-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.590-594
    • /
    • 2012
  • ZnO nanowires were fabricated by hydrothermal synthesis technique for field emission device application. Al-doped zinc oxide (AZO) thin films were prepared as seed layer of catalyst for the ZnO nanowire synthesis, for which conductivity of the seed layer was tried to be improved for enhancing the field emission property of the ZnO nanowire. The AZO seed layer revealed specific resistivity of $ 7.466{\times}10^{-4}[{\Omega}{\cdot}cm]$ and carrier mobility of 18.6[$cm^2$/Vs]. Additionally, upper tip of the prepared ZnO nanowires was treated by hydrochloric acid (HCl) to form a nanocone shape of ZnO nanowire, which was aimed for enhanced focusing of electric field on that and resultingly to improve field emission property of the ZnO nanowires. The ZnO nanowire with nanocone shape revealed decreased threshold electric field and increased current density than those of the simple ZnO nanowires.

Characterization of Al:ZnO thin films deposited at different substrate temperatures (기판 온도변화에 따른 Al-ZnO 박막의 특성)

  • No, I.J.;Shin, P.K.;Lee, C.;Kim, Y.H.;Ji, S.H.;Lim, Y.C.;Chung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.242-243
    • /
    • 2007
  • Highly transparent conducting aluminum-doped zinc oxide (AZO) thin films were deposited on Corning glass substrate using an Nd:YAG pulsed laser deposition technology. AZO thin films deposited with 650nm thickness showed the best electrical properties of the electrical resistivity of $4.6{\times}10^{-4}[{\Omega}{\cdot}cm]$, a carrier concentration of $9.3{\times}10^{20}[cm^{-3}]$, and a carrier mobility of $31[cm^2/V{\cdot}s]$. Besides, the optical transmittance spectra in visible region (200-800nm) of AZO thin films show an high average transmittance over 90%.

  • PDF

Dependance of thickness on the properties of B doped ZnO:Al (AZOB) thin film on polycarbonate (PC) substrate at room temperature (PC 기판에 저온 증착한 AZOB 박막의 두께에 따른 특성 변화)

  • Yu, Hyun-Kyu;Lee, Kyu-Il;Lee, Jong-Hwan;Kang, Hyun-Il;Lee, Tae-Yong;Oh, Su-Young;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.138-138
    • /
    • 2008
  • In this study, effect of thickness on structural, electrical and optical properties of B doped ZnO:Al (AZOB) films was investigated. AZOB films were deposited on PC substrates by DC magnetron sputtering. The thickness range of films were from 300 nm to 800 nm to identified as increasing thickness, stress between substrate and AZOB film. The. average transmittance of the films was over 80 % until 500 nm. Then a resistivity of $1.58\times10^{-3}\Omega$-cm was obtained. We presented that a AZOB film of 500 nm was optimization to obtain a high transmittance and conductivity.

  • PDF