• Title/Summary/Keyword: Al-based metallic glass

Search Result 22, Processing Time 0.081 seconds

Quantitative Analysis and Archaeometric Interpretation for Molten Glass and Bronze Materials within Baekje Crucibles from the Ssangbukri Site in Buyeo, Korea (부여 쌍북리유적 출토 백제 도가니 내부 유리 및 청동 용융물질의 정량분석과 고고과학적 해석)

  • Lee, Chan-Hee;Park, Jin-Young;Kim, Ji-Young
    • Journal of Conservation Science
    • /
    • v.26 no.2
    • /
    • pp.157-169
    • /
    • 2010
  • This study focused on the material characteristics and archaeometric relationship between the molten glass and bronze materials within the crucibles and gilt-bronze Bodhisattva statue excavated from the Ssangbukri site in Buyeo, Korea. Yellowish green to red brown vitreous material in the crucibles was identified as lead glass which contained scarce amount of BaO, and low $Al_2O_3$ and CaO. Metallic molten material was identified as bronze of copper-tin-lead alloy with low amount of impurities that indicated well-refined materials. Also, cassiterite was used for raw metal ore of tin. The Bodhisattva statue consisted of major copper with trace impurities in the core metal, and gold amalgam in the gilded layer. Though lead isotopic analysis showed contradictory results in each lead glass, bronze and Bodhisattva statue that required further examination, it could be stated that the statue was made in the Ssangbukri site based on the high-level technical skills of bronze production.

A Study on Properties of a Near-Field Microwave Microscope Using a Waveguide Resonator (도파관 공진기를 이용한 마이크로파 근접장 현미경의 특성에 관한 연구)

  • Kim, Hyun;Kim, Song-Hui;Kim, Joo-Young;Lee, Kie-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.16-24
    • /
    • 2008
  • Near-field scanning microwave microscope (NSMM) has been used to characterize the electromagnetic properties of samples based on a cavity perturbation technique. We used a NSMM using a waveguide cavity to couple a metallic probe tip as a point like evanescent field emitter. We explained the quality of our NSMM system by applying the cavity perturbation theory. First, to make a shape perturbation, we inserted linear and loop probes in the waveguide resonator. To check up electric and magnetic field distribution inside the waveguide resonator by shape perturbation, we confirmed the field distribution by using a HFSS simulation. Second, to make material perturbation, we located a dielectric sample in front of the probe tip and measured reflection coefficient $(S_{11})$. We found that the resonance frequency$(f_r)$ was changed linearly as the dielectric constant of resonator$({\varepsilon}_r)$ increased when ${\Delta}{\varepsilon}\;and\;{\Delta}{\mu}$ were small.