• Title/Summary/Keyword: Al-Si-SiC

Search Result 2,085, Processing Time 0.032 seconds

Properties of AlSi etching using the MERIE type reactor (MERIE형 반응로를 이용한 AlSi의 식각 특성)

  • 김창일;김태형;장의구
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.188-195
    • /
    • 1996
  • The AlSi etching process using the MERIE type reactor carried out with different process parameters such as C1$_{2}$ and N$_{2}$ gas flow rate, RF power and chamber pressure. The etching characteristics were evaluated in terms of etch rate, selectivity, uniformity and etched profile. As the N2 gas flow rate is increased, the AlSi etch rate is decreased and uniformity has remained constant within .+-.5%. The etch rate is increased and uniformity is decreased, according to increment of the C1$_{2}$ gas flow rate, RF power and chamber pressure. Selective etching of TEOS with respect to AlSi is decreased as the RF power is increased while it is increased by increment of the C1$_{2}$ gas flow rate and chamber pressure, on the other hand, selective etching of photoresist with respect to AlSi is increased by increment of the C1$_{2}$ gas flow rate and chamber pressure, it is decreased as the N$_{2}$ gas flow rate is increased.

  • PDF

Fabrication and Characterisitics of Al2O3-SiC Ceramic Composites for Electrostatic Discharge Safe Components (대전방지용 Al2O3-SiC 복합세라믹 소결체의 제조 및 특성)

  • Kim, Ha-Neul;Oh, Hyun-Myung;Park, Young-Jo;Ko, Jae-Woong;Lee, Hyun-Kwuon
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.144-150
    • /
    • 2018
  • $Al_2O_3-SiC$ ceramic composites are produced using pressureless sintering, and their plasma resistance, electrical resistance, and mechanical properties are evaluated to confirm their applicability as electrostatic-discharge-safe components for semiconductor devices. Through the addition of Mg and Y nitrate sintering aids, it is confirmed that even if SiC content exceeded 10%, complete densification is possible by pressureless sintering. By the uniform distribution of SiC, the total grain growth is suppressed to about $1{\mu}m$; thus an $Al_2O_3-SiC$ sintered body with a high strength over 600 MPa is obtained. The optimum amount of SiC to satisfy all the desired properties of electrostatic-discharge-safe ceramic components is obtained by finding the correlation between the plasma resistance and the electrical resistivity as a function of SiC amount.

Structural Control Aiming for High-performance SiC Polycrystalline Fiber

  • Ishikawa, Toshihiro;Oda, Hiroshi
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.615-621
    • /
    • 2016
  • SiC-polycrystalline fiber (Tyranno SA, Ube Industries, Ltd.) shows very high heat-resistance and excellent mechanical properties up to very high temperatures. However, further increase in the strength is required. Up to now, we have already clarified the relationship between the strength and the defect-size of the SiC-polycrystalline fiber. The defects are formed during the conversion process from the raw material (amorphous Si-Al-C-O fiber) into SiC-polycrystalline fiber. In this conversion process, a degradation of the Si-Al-C-O fiber and a subsequent sintering of the degraded fiber proceed as well, accompanied by a release of CO gas and compositional changes, to obtain the dense SiC-polycrystalline fiber. Since these changes proceed in each filament, the strict control should be needed to minimize residual defects on the surface and in the inside of each filament for achieving the higher strength. In this paper, the controlling factors of the fiber strength and the fine structure will appear.

Preparations of ASC Refractory Materials from Kaolin using Thermit Reaction (카오린으로부터 테르밋 반응을 통한 $Al_2O_3-SiC-C(ASC)$계 내화재료 합성)

  • 이온영;이용구;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.429-435
    • /
    • 1995
  • Al2O3-SiC-C(ASC) refractory materials were prepared from kaolin using thermit reaction. The mixed powder (A-K) for the thermit reaction was composed of Hadong kaolin, C(graphite) and Al. A-S(SiO2+C+Al) composition was also employed to compare with A-K in respect to reactability. As a result of XRD patterns of A-K sample after thermit reaction, and firing at 140$0^{\circ}C$ for 3hrs in Ar atmosphere, it was possible to use as a ASC refractory materials.

  • PDF

The Microstructure Control of SiC Ceramics Containing Porcelain Scherben (자기파를 함유한 SiCwlf 세라믹스의 미세구조 제어)

  • 이성희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.626-634
    • /
    • 1995
  • The SiC-porcelain powder mixtures containing 51.9wt% SiC are produced as by-products from the surface abrasion process of porcelain cores. This raw powders were used as starting materials for the synthesis of SiC containing ceramics. The specimen, which was fired at 135$0^{\circ}C$ from raw powders, had SiC, $Al_{2}O_{3}$, , cristobalite, mullite as crystalline phases, and the fractured microstructure showed dispersed SiC crystalline particles almost wetted with glassy matrix and spherical pores. Although the oxidation of SiC containing powder compacts wetted with glassy matrix and spherical pores. Although the oxidation of SiC containing powder compacts started at the range of 600~80$0^{\circ}C$ form the analysis of weight gain, the presence of $SiO_{2}$ crystallien phase and cristobalite was confirmed at 100$0^{\circ}C$ by XRD analysis. Mullitization of specimens was accelerated by preheating before the final firing. The specimen sintered at 135$0^{\circ}C$ after 100$0^{\circ}C$ preheating consisted of SiC, cristobalite, mullite as crystalline phases, and revealed 2.24g/$cm^{3}$ bulk density, 11.73% water adsorption, porous microstructure with small amount of glassy phase. SiC contents of specimens, which was 51.9 wt% in the raw powders, reduced to 37~22 wt% after firing at 135$0^{\circ}C$ depending on the preheating condition.

  • PDF

Analysis of the K Gettering in SiO2/PSG/SiO2/Al-1%Si Multilevel Thin Films using SIMS (SIMS를 이용한 SiO2/PSG/SiO2/Al-1%Si 적층 박막내의 K 게터링 분석)

  • Kim, Jin Young
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.3
    • /
    • pp.219-224
    • /
    • 2017
  • The K gettering in $SiO_2/PSG/SiO_2/Al-1%Si$ multilevel thin films was investigated using SIMS(secondary ion mass spectrometry) and XPS(X-ray Photoelectron Spectroscopy) analysis. DC magnetron sputter techniques and APCVD(atmosphere pressure chemical vapor deposition) were utilized for the deposition of Al-1%Si thin films and $SiO_2/PSG/SiO_2$ passivations, respectively. Heat treatment was carried out at $400^{\circ}C$ for 5 h in air. SIMS depth profiling was used to determine the distribution of K, Al, Si, P and other elements throughout the $SiO_2/PSG/SiO_2/Al-1%Si$ multilevel thin films. XPS was used to analyze binding energies of Si and P elements in PSG passivation layers. K peaks were observed throughout the $PSG/SiO_2$ passivation layers on the Al-1%Si thin films and especially at the $PSG/SiO_2$ interfaces. K gettering in $SiO_2/PSG/SiO_2/Al-1%Si$ multilevel thin films is considered to be caused by a segregation type of gettering. The chemical state of Si and P elements in PSG passivation appears to be $SiO_2$ and $P_2O_5$, respectively

Interface Reactions and Diffusion of Si3N4/Ti and Si3N4/TiAl Alloys (Si3N4/Ti와 Si3N4/TiAl합금의 계면반응 및 확산 거동)

  • Choi, Kwang Su;Kim, Sun Jin;Lee, Ji Eun;Park, Joon Sik;Lee, Jong Won
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.603-608
    • /
    • 2017
  • $Si_3N_4$ is a ceramic material attracting attention in many fields because of its excellent abrasion resistance. In addition, Ti and TiAl alloys are metals used in a variety of high temperature environments, and have attracted much attention because of their high strength and high melting points. Therefore, study of the interface reaction between $Si_3N_4/Ti$ and $Si_3N_4/TiAl$ can be a useful practice to identify phase selection and diffusion control. In this study, $Si_3N_4/Ti_5Si_3+TiN/TiN/Ti$ diffusing pairs were formed in the $Si_3N_4/Ti$ interfacial reaction and $Si_3N_4/TiN(Al)/Ti_3Al/TiAl$ diffusion pathway was identified in the $Si_3N_4/TiAl$ interfacial reaction. The diffusion layers of the interface reactions were identified and, to investigate the kinetics of the diffusion layer, the integrated diffusion coefficients were estimated.

Formation of Ohmic Contacts on acceptor ion implanted 4H-SiC (이온 이온주입한 p-type 4H-SiC에의 오믹 접촉 형성)

  • Bahng, W.;Song, G.H.;Kim, H.W.;Seo, K.S.;Kim, S.C.;Kim, N.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.290-293
    • /
    • 2003
  • Ohmic contact characteristics of Al ion implanted n-type SiC wafer were investigated. Al ions implanted with high dose to obtain the final concentration of $5{\times}10^{19}/cm^3$, then annealed at high temperature. Firstly, B ion ion implanted p-well region were formed which is needed for fabrication of SiC devices such as DIMOSFET and un diode. Secondly, Al implanted high dose region for ohmic contact were formed. After ion implantation, the samples were annealed at high temperature up to $1600^{\circ}C\;and\;1700^{\circ}C$ for 30 min in order to activate the implanted ions electrically. Both the inear TLM and circular TLM method were used for characterization. Ni/Ti metal layer was used for contact metal which is widely used in fabrication of ohmic contacts for n-type SiC. The metal layer was deposited by using RF sputtering and rapid thermal annealed at $950^{\circ}C$ for 90sec. Good ohmic contact characteristics could be obtained regardless of measuring methods. The measured specific contact resistivity for the samples annealed at $1600^{\circ}C\;and\;1700^{\circ}C$ were $1.8{\times}10^{-3}{\Omega}cm^2$, $5.6{\times}10^{-5}{\Omega}cm^2$, respectively. Using the same metal and same process of the ohmic contacts in n-type SiC, it is found possible to make a good ohmic contacts to p-type SiC. It is very helpful for fabricating a integrated SiC devices. In addition, we obtained that the ratio of the electrically activated ions to the implanted Al ions were 10% and 60% for the samples annealed at $1600^{\circ}C\;and\;1700^{\circ}C$, respectively.

  • PDF

Performances of a-Si:H thin-film solar cells with buffer layers at TCO/p a-SiC:H interface (CO/p a-SiC:H 계면의 버퍼층에 따른 비정질 실리콘 박막태양전지 동작특성)

  • Lee, Ji-Eun;Jang, Ji-Hun;Jung, Jin-Won;Park, Sang-Hyun;Jo, Jun-Sik;Yoon, Kyung-Hoon;Song, Jin-Soo;Kim, Dong-Hwan;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.32-32
    • /
    • 2009
  • 실리콘 박막 태양전지에서 전면 투명전도막(TCO)은 태양전지의 전기, 광학적 특성을 결정하는 중요한 기능을 한다. ZnO:Al TCO는 기존에 사용되던 $SnO_2:F$와는 비정질 실리콘(a-Si:H) 박막 태양전지의 윈도우 층으로 사용되는 p a-SiC:H와의 일함수(work function) 차이로 인해 접촉전위(contact barrier)를 형성하게 되며 이로 인해 태양전지의 충진율(fill factor)이 $SnO_2:F$에 비해 감소하는 단점을 보인다. 본 연구에서는 ZnO:Al/p a-SiC:H 계면의 접촉전위 발생원인 및 태양전지 충진율 감소현상에 관한 정확한 원인규명을 위해 다양한 특성을 갖는 버퍼층을 삽입하여 계면특성 및 태양전지의 동작특성을 분석하고자 한다.

  • PDF

Low-temperature Epitaxial Growth of a Uniform Polycrystalline Si Film with Large Grains on SiO2 Substrate by Al-assisted Crystal Growth

  • Ahn, Kyung Min;Kang, Seung Mo;Moon, Seon Hong;Kwon, HyukSang;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.103-108
    • /
    • 2013
  • Epitaxial growth of a high-quality thin Si film is essential for the application to low-cost thin-film Si solar cells. A polycrystalline Si film was grown on a $SiO_2$ substrate at $450^{\circ}C$ by a Al-assisted crystal growth process. For the purpose, a thin Al layer was deposited on the $SiO_2$ substrate for Al-assisted crystal growth. However, the epitaxial growth of Si film resulted in a rough surface with humps. Then, we introduced a thin amorphous Si seed layer on the Al film to minimize the initial roughness of Si film. With the help of the Si seed layer, the surface of the epitaxial Si film was smooth and the crystallinity of the Si film was much improved. The grain size of the $1.5-{\mu}m$-thick Si film was as large as 1 mm. The Al content in the Si film was 3.7% and the hole concentration was estimated to be $3{\times}10^{17}/cm^3$, which was one order of magnitude higher than desirable value for Si base layer. The results suggest that Al-doped Si layer could be use as a seed layer for additional epitaxial growth of intrinsic or boron-doped Si layer because the Al-doped Si layer has large grains.