• 제목/요약/키워드: Al-Si-Fe alloy

검색결과 166건 처리시간 0.027초

방열소재용 알루미늄 주조합금 설계 및 특성평가 (Design and Evaluation of Aluminum Casting Alloys for Thermal Managing Application)

  • 신제식;김기태;고세현;안동진;김명호
    • 한국주조공학회지
    • /
    • 제33권1호
    • /
    • pp.22-31
    • /
    • 2013
  • In order to develop an aluminum alloy, that can combine high thermal conductivity and good castability and anodizability, aluminum alloys with low Si content, such as Al-(0.5~1.5)Mg-1Fe-0.5Si and Al-(1.0~1.5)Si-1Fe-1Zn, were designed. The developed aluminum alloys exhibited 170~190% thermal conductivity (160~180 W/mK), 60~85% fluidity, and equal or higher ultimate tensile strength compared with those of the ADC12 alloy. In each developed alloy system, the thermal conductivity decreased and the strength increased with the increment of Mg and Si, which are the significant alloying elements. The fluidity was in reverse proportion to the Mg content and in proportion to the Si content. The Al-(0.5~1.5)Mg-1Fe-0.5Si alloys exhibited better fluidity in thick-wall castings, while the Al-(1.0~1.5)Si-1Fe-1Zn alloys were better in thin-wall castability due to their lower surface energies. The fluidity behavior was complexly affected by the heat release for the solidification, viscosity, solidification range, and the type, quantity, and formation juncture of the main secondary phase.

Ni added Si-Al Alloys with Enhanced Li+ Storage Performance for Lithium-Ion Batteries

  • Umirov, Nurzhan;Seo, Deok-Ho;Jung, Kyu-Nam;Kim, Hyang-Yeon;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권1호
    • /
    • pp.82-88
    • /
    • 2019
  • Here, we report on nanocrystalline Si-Al-M (M = Fe, Cu, Ni, Zr) alloys for use as an anode for lithium-ion batteries, which were fabricated via a melt-spinning method. Based on the XRD and TEM analyses, it was found that the Si-Al-M alloys consist of nanocrystalline Si grains surrounded by an amorphous matrix phase. Among the Si-Al-M alloys with different metal composition, Ni-incorporated Si-Al-M alloy electrode retained the high discharge capacity of 2492 mAh/g and exhibited improved cyclability. The superior $Li^+$ storage performance of Si-Al-M alloy with Ni component is mainly responsible for the incorporated Ni, which induces the formation of ductile and conductive inactive matrix with crystalline Al phase, in addition to the grain size reduction of active Si phase.

Al6Si2Cu 알루미늄 합금의 기계적 물성 향상을 위한 이단계 고용화 열처리 (Two-step Solution Treatment for Enhancement of Mechanical Properties of AlSiCu Aluminum Alloy)

  • 박상규;김정석
    • 열처리공학회지
    • /
    • 제31권3호
    • /
    • pp.97-103
    • /
    • 2018
  • The objective of this study is to develop the mechanical properties of AlSiCu aluminum alloy by the two-step solution heat treatment. The microstructure of gravity casting specimen represents a typical dendrite structure having a secondary dendrite arm spacing (SDAS) of 40 mm. In addition to the Al matrix, a large amount of coarsen eutectic Si phase, $Al_2Cu$ intermetallic phase, and Fe-rich phases are generated. The eutectic Si phases are fragmented and globularized with solution heat treatment. Also, the $Al_2Cu$ intermetallic phase is resolutionized into the Al matrix. The $2^{nd}$ solution temperature at $525^{\circ}C$ might be a optimum condition for enhancement of mechanical properties of AlSiCu aluminum alloy.

전자기력을 이용한 알루미늄 스크랩 중의 Fe 제거에 관한 연구;Part 2. Al-Si-Cu계 합금 스크랩에서 전자기력에 따른 Fe계 금속간화합물의 이동양상 (A Study on the Elimination of Fe Elements in Aluminum Alloy by Electromagnetic Force;Part 2. The Movement of Fe-Contained Intermetallics with Electromagnetic Force in Al-Si-Cu Scrap)

  • 김정호;노정훈;박준표;윤의박
    • 한국주조공학회지
    • /
    • 제18권3호
    • /
    • pp.240-245
    • /
    • 1998
  • In the view point of the environmental conservation and the energy reduction, the recycling of metal scrap is coming as one of the global subjects in the world. In this study, the movement of intermetallics with electromagnetic force in a melt of a scrap of Al-Si-Cu alloy (JIS ADC12), which was widely used in diecasting process, was investigated in order to eliminate the Fe element, which was usually accumulated in a scrap. In this study, we applied electromagnetic method to eliminate Fe element in ADC12 aluminum alloy scrap which contains 1.64wt.% Fe and the effects of electromagnetic force on the particle movement was visualized and confirmed by water modeling and experiment. As a result, the Fe intermetallic compounds are moved to the direction opposite to that of the electromagnetic force as the force applies, thus eliminated from the bulk metal. Therefore, the content of Fe in matrix decreased from 1.64wt.% to 0.45wt.%.

  • PDF

산소함량에 따른 Ti-Al-Fe-Si-O 합금의 기계적 특성 및 미세조직 변화 (The Effects of Oxygen Content on Microstructure and Mechanical Properties of Ti-Al-Fe-Si-O alloy)

  • 배진주;염종택;박찬희;홍재근;김성웅;윤석영;이상원
    • 열처리공학회지
    • /
    • 제29권6호
    • /
    • pp.264-271
    • /
    • 2016
  • The effect of the oxygen content and the annealing temperature on the tensile behavior of the Ti-1.5Al-3Fe-0.25Si-(0.1~0.5)O alloy was investigated. The tensile properties were dependent on the volume fraction of the microstructure constituents, i.e. the equixed ${\alpha}$, equixed ${\beta}$ and lamellar ${\alpha}$. The results showed that the O-partitioned equixed ${\alpha}$ had a much higher strength compared to the equixed ${\beta}$. The strength of the lamellar ${\alpha}$ increased with increasing the annealing temperature because the O content of the lamellar ${\alpha}$ increased. Ti-1.5Al-3Fe-0.25Si-0.3O alloy annealed to $900^{\circ}C$ where the volume fraction of lamellar ${\alpha}$ was the highest exhibited an excellent combination of the strength (1198.5 MPa) and ductility (27.5%). The effect of the lamellar ${\alpha}$ on the ductility was discussed.

과공정 Al-15wt.%Si 압출재와 회주철의 미세조직 및 엔진 오일 환경에서의 마모 특성 (Microstructure and Wear Properties in an Engine Oil Environment of Extruded Hyper-eutectic Al-15wt.%Si Alloy and Gray Cast Iron)

  • 강연지;김종호;황종일;이기안
    • 소성∙가공
    • /
    • 제27권6호
    • /
    • pp.339-346
    • /
    • 2018
  • This study investigated the microstructure and wear properties of extruded hyper-eutectic Al-Si (15wt.%) alloy in an engine oil environment. The wear mechanism of the material was also analyzed and compared to conventional gray cast iron. In microstructural observation results of Al-15wt.%Si alloy, primary Si phase ($45.3{\mu}m$) and eutectic Si phase ($3.1{\mu}m$) were found in the matrix, and the precipitations of $Mg_2Si({\beta}^{\prime})$, $Al_2Cu({\theta}^{\prime})$ and $Al_6(Mn,Fe)$ were also detected. In the case of gray cast iron, ferrite and pearlite were observed. It was also observed that flake graphite ($20-130{\mu}m$) were randomly distributed. Wear rates were lower in the Al-Si alloy as compared to those of gray cast iron in all load conditions, confirming the outstanding wear resistance of Al-15wt.%Si alloy in engine oil environment. In the $4kg_f$ condition, the wear rate of gray cast iron was $6.0{\times}10^{-5}$ and that of Al-Si measured $0.8{\times}10^{-5}$. The microstructures after wear of the two materials were analyzed using scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The primary Si and eutectic Si of Al-Si alloy effectively mitigated the abrasive wear, and the Al matrix effectively endured to accept a significant amount of plastic deformation caused by wear.

Al-Si-Cu계 합금의 주조법과 용체화처리 조건이 기계적 특성변화에 미치는 영향 (Effects of the Solid Solution Treatment Conditions and Casting Methods on Mechanical Properties of Al-Si-Cu Based Alloys)

  • 문민국;김영찬;김유미;최세원;강창석;홍성길
    • 한국주조공학회지
    • /
    • 제38권6호
    • /
    • pp.111-120
    • /
    • 2018
  • In this study, the effects of two different casting methods (gravity casting and, diecasting) and various solid-solution conditions on the mechanical properties of ASC (Al-10.5wt%Si-1.75wt%Cu) and ALDC12 (Al-10.3wt%Si-1.72wt%Cu-0.76wt%Fe-0.28wt% Mn-0.32wt%Mg-0.9wt%Zn) alloys were investigated. A thermodynamic solidification analysis program (PANDAT) was used to predict the liquidus, solidus, and phases of the used alloys. In the results of an XRD analysis, ${\beta}$-AlFeSi peaks were observed only in the ALDC12 alloy regardless of the casting method or SST (solid-solution treatment) conditions. However, according to the results of a FE-SEM observation, both ${\theta}(Al_2Cu)$ and ${\beta}$-AlFeSi were found to exist besides ${\alpha}$-Al and eutectic Si in the gravity-casted ASC alloy at $500^{\circ}C$ after a SST of 120min. The ${\alpha}$-AlFeSi and ${\beta}$-AlFeSi phases including the eutectic phases were also found to exist in the ALDC12 alloy. The results of a microstructural observation and analyses by XRD, FE-SEM and EDS were in good agreement with the PANDAT results. The gravity-casted ALDC12 and ASC specimens showed the highest Y.S. and UTS values after aging for three hours at $180^{\circ}C$ after a SST at $500^{\circ}C$ for 30min. At longer solid-solution treatment times at $500^{\circ}C$ in the gravity-casted ALDC12 and ASC specimens, the elongations of the ASC alloys increased, whereas they decreased slightly in the ALDC12 alloys.

급속응고 Al-20Si-5Fe-xPb(x=2, 4, 6 wt.%) 합금의 미세조직과 마모거동 (Microstructure and Wear Behaviour of Rapidly Solidified Al-20Si-5Fe-zPb(x=2, 4, 6wt.%) Alloys)

  • 김택수
    • 한국분말재료학회지
    • /
    • 제6권1호
    • /
    • pp.96-102
    • /
    • 1999
  • The effect of Pb addition on microstructure and wear resistance was studied in rapidly solidified Al-20Si-5Fe-xPb(x=2, 4, 6 wt.%) alloys. The R/S Al-20Si-5Fe-xPb (x=2, 4, 6 wt.%) alloys showed a fine and homogeneous microstructure and an improved wear property compared with Al-20Si-5Fe alloy, while no significant change in UTS (Ultimate Tensile Strength) was shown. Contribution of the dispersoids on the wear property was discussed by showing the plastic deformation layers formed during wear track.

  • PDF

Al-Zn-Mg-Cu-Si 소결합금의 미세조직과 기계적 특성에 미치는 열처리의 영향 (Effect of Heat Treatment on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Si Sintered Alloys with and Without High-energy Ball Milling)

  • 이준호;박성현;이상화;손승배;이석재;정재길
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.470-477
    • /
    • 2023
  • The effects of annealing on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500℃ causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 ㎛ and from 2.9 to 6.3 ㎛, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.