Browse > Article
http://dx.doi.org/10.12656/jksht.2016.29.6.264

The Effects of Oxygen Content on Microstructure and Mechanical Properties of Ti-Al-Fe-Si-O alloy  

Bae, Jin Joo (Metallic Materials Division, Korea Institute of Materials Science)
Yeom, Jong Taek (Metallic Materials Division, Korea Institute of Materials Science)
Park, Chan Hee (Metallic Materials Division, Korea Institute of Materials Science)
Hong, Jae Keun (Metallic Materials Division, Korea Institute of Materials Science)
Kim, Senog Woong (Metallic Materials Division, Korea Institute of Materials Science)
Yoon, Seog Young (School of Materials Science and Engineering, Pusan National University)
Lee, Sang Won (Metallic Materials Division, Korea Institute of Materials Science)
Publication Information
Journal of the Korean Society for Heat Treatment / v.29, no.6, 2016 , pp. 264-271 More about this Journal
Abstract
The effect of the oxygen content and the annealing temperature on the tensile behavior of the Ti-1.5Al-3Fe-0.25Si-(0.1~0.5)O alloy was investigated. The tensile properties were dependent on the volume fraction of the microstructure constituents, i.e. the equixed ${\alpha}$, equixed ${\beta}$ and lamellar ${\alpha}$. The results showed that the O-partitioned equixed ${\alpha}$ had a much higher strength compared to the equixed ${\beta}$. The strength of the lamellar ${\alpha}$ increased with increasing the annealing temperature because the O content of the lamellar ${\alpha}$ increased. Ti-1.5Al-3Fe-0.25Si-0.3O alloy annealed to $900^{\circ}C$ where the volume fraction of lamellar ${\alpha}$ was the highest exhibited an excellent combination of the strength (1198.5 MPa) and ductility (27.5%). The effect of the lamellar ${\alpha}$ on the ductility was discussed.
Keywords
Ti alloy; Ti-Al-Fe-Si-O; oxygen effect; equiaxed ${\alpha}$; lamellar ${\alpha}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. H. Song, J. H. Kang, C. H. Park, S. W. Kim, Y. T. Hyun, N. H. Kang, and J. T. Yeom : Korean J. Met. Mater., 50 (2012) 477.
2 R. Boyer, G. Welsch, and E. W. Collins : Materials Properties Handbook, Titanium Alloys, ASM International, Materials Park (1994).
3 H. Fujii, T. Maeda : Nippon Steel & Sumitomo Metal Technical Report, 106 (2014) 16.
4 H. Fujii : Mater. Sci. Eng. A, 243 (1998) 103.   DOI
5 H. Fujii and K. Takahashi : Nippon Steel Technical Report, 85 (2002) 113.
6 H. Fujii, K. Fujisawa, M. Ishii, and Y. Yamashita : Nippon Steel Technical Report, 85 (2002) 107.
7 H. Choe, S. M. Abkowitz, S. Abkowitz, and D. C. Dundada : J. Alloys Compd., 390 (2005) 62.   DOI
8 Y. Okazaki, Y. Ito, A. Ito, and T. Tateishi : Mater. Trans. 34 (1993) 1217.   DOI
9 Y. Sang, D. Xu, R. Yang, and Z. X. Guo : Mater. Sci. Eng. A 260 (1999) 269.   DOI
10 D. R. N. Correa, F. B. Vicente, R. O. Araujo, M. L. Lourenco, P. K. B. Kuroda, M. A. R. Buzalaf, and C. R. Grandini : J. Mater. Reas. Tech., 4 (2015) 180.   DOI
11 Y. Q. Zhao, S. W. Xin, and W. D. Zeng : J. Alloys Compd., 481 (2009) 190.   DOI
12 E. W. Collings : Scr. Mater. 7 (1973) 437.
13 S. Bin, L. Shufeng, I. Hisashi, U. Junko, and K. Katsuyoshi : 41 (2012) 59.
14 Y. WEI, H. K. D. H. Bhaheshia, and T. Sourmail : J. Mater. Sci. Technol., 21 (2005) 403.
15 C. Ouchi, H. Iizumi, and S. Mitao : Mater. Sci. Eng. A, 243 (1998) 186.   DOI
16 Z. Liu and G. Welsch : Metall. Mater. Trans. A, 19A (19888) 527.
17 Y.-C. Lin, H-M. Cheng, and Y.-C. Chen : Mater. Des., 54 (2014) 222.   DOI
18 D.-S. Kang, N. Koga, M. Sakata, N. Nakada, T. Tsuchiyama, and S. Takaki : Mater. Sci. Eng. A 606 (2014) 101.   DOI