• 제목/요약/키워드: Al-Si-Cu alloy

검색결과 161건 처리시간 0.024초

Microstructural Change and Magnetic Properties of Nanocrystalline Fe-Si-B-Nb-Cu Based Alloys Containing Minor Elements

  • Nam, Seul-Ki;Moon, Sun-Gyu;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.327-332
    • /
    • 2014
  • The effect of minor element additions (Ca, Al) on microstructural change and magnetic properties of Fe-Nb-Cu-Si-B alloy has been investigated, in this paper. The Fe-Si-B-Nb-Cu(-Ca-Al) alloys were prepared by arc melting in argon gas atmosphere. The alloy ribbons were fabricated by melt-spinning, and heat-treated under a nitrogen atmosphere at $520-570^{\circ}C$ for 1 h. The soft magnetic properties of the ribbon core were analyzed using the AC B-H meter. A differential scanning calorimetry (DSC) was used to examine the crystallization behavior of the amorphous alloy ribbon. The microstructure was observed by X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). The addition of Ca increased the electrical resistivity to reduce the eddy current loss. And the addition of Al decreased the intrinsic magnetocrystalline anisotropy $K_1$ resulting in the increased permeability. The reduction in the size of the ${\alpha}$-Fe precipitates was observed in the alloys containing of Ca and Al. Based on the results, it can be concluded that the additions of Ca and Al notably improved the soft magnetic properties such as permeability, coercivity and core loss in the Fe-Nb-Cu-Si-B base nanocrystalline alloys.

SiC와 흑연 입자 강화 주조용 Al기지 복합재료의 진동감쇠능에 미치는 강화입자조성의 효과 (Effect of Reinforcement Content on Damping Capacities for Castable Aluminum Matrix Composites Reinforced with SiC and Graphite Particles)

  • 최유송
    • 한국군사과학기술학회지
    • /
    • 제7권1호
    • /
    • pp.47-58
    • /
    • 2004
  • Loss factors of A356, Mn-Cu alloy and aluminum matrix composites reinforced with $SiC_p$ and Ni-coated graphite particles at various contents have been investigated using clamped-free cantilever beam method. The loss factors of half-power bandwidth of the specimens were measured over a wide range of frequencies from 50 to 3300Hz. Among the specimens, Al-10%$SiC_p$-10%$C_p$ showed the highest loss factor at the mode I, while Mn-Cu alloy showed the highest loss factors at the modes II and III. Consequently, at the mode I the Al-10%$SiC_p$--10%$C_p$ showed the loss factor of 0.00093, which is 2.64 and 1.58 times higher than those of A356 and Mn-Cu alloy, respectively.

Al(Si, Cu)합금막의 플라즈마 식각후 표면 특성 (Surface properties of Al(Si, Cu) alloy film after plasma etching)

  • 구진근;김창일;박형호;권광호;현영철;서경수;남기수
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권3호
    • /
    • pp.291-297
    • /
    • 1996
  • The surface properties of AI(Si, Cu) alloy film after plasma etching using the chemistries of chlorinated and fluorinated gases with varying the etching time have been investigated using X-ray Photoelectron Spectroscopy. Impurities of C, Cl, F and O etc are observed on the etched AI(Si, Cu) films. After 95% etching, aluminum and silicon show metallic states and oxidized (partially chlorinated) states, copper shows Cu metallic states and Cu-Cl$_{x}$(x$_{x}$ (x$_{x}$ (1

  • PDF

반도체 metallization용 Al-Cu 합금의 미세구조 천이에 미치는 Si 첨가영향 (Effect of Si Addition on the Microstructure of AI-Cu-Si Alloy for Thin Film Metallization)

  • 박민우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.237-241
    • /
    • 2000
  • The effects of Si addition on the precipitation processes of in Al-Cu-Si alloy films were studied by the transmission electron microscopy. Deposition of an Al-1.5Cu-1.5Si (wt. %) film at $305^{\circ}C$ resulted in formation of fine, uniformly distributed spherical $\theta$-phase particles due to the precipitation of the $\theta$ and Si phase particles during deposition. For deposition at $435^{\circ}C$, fine $\theta$-phase particles precipitated during wafer cooldown, while coarse Si nodules formed at the sublayer interface during deposition. The film susceptibility to corrosion is discussed in relation to the film microstructure and deposition temperature.

  • PDF

Al-10.5wt%Si-2wt%Cu 다이 캐스팅용 2차 지금의 기계적 특성과 전기전도도에 미치는 Sr 양과 유지시간의 영향 II (The Effect of Sr Addition and Holding Time on Mechanical Property and Electrical Conductivity of Al-10.5%Si-2%Cu Secondary Die-casting Alloys)

  • 신상수;김명용;염길용
    • 한국주조공학회지
    • /
    • 제30권6호
    • /
    • pp.205-209
    • /
    • 2010
  • This study evaluates the influence of strontium addition and holding time on mechanical properties for Al-10.5wt%Si-2wt%Cu secondary die-casting alloy and the measured electrical conductivity of modified alloys. A general improvement in the mechanical properties of the alloy was observed after adding the strontium. Ultimate tensile strength, elongation and electrical conductivity of modified alloys were improved by increasing strontium content and holding time. From these results, the optimal strontium content and holding time were identified on the mechanical properties of Al-10.5wt%Si-2wt%Cu secondary die-casting alloys.

분무 주조 과공정 Al-Si계 합금의 응력이완 및 Creep 천이 거동 (Load Relaxation and Creep Transition Behavior of a Spray Cast Hypereutectic Al-Si Based Alloy)

  • 김민수;방원규;박우진;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.176-179
    • /
    • 2005
  • Spray casting of hypereutectic Al-Si based alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. Hypereutectic Al-Si based alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, low coefficient of thermal expansion, high thermal stability, and good creep resistance. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. High temperature deformation behavior of the hypereutectic Al-Si based alloy has been investigated by applying the internal variable theory proposed by Chang et al. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test.

  • PDF

Al-10.5wt%Si-2wt%Cu 다이 캐스팅용 2차 지금의 미세조직에 미치는 Sr의 양과 유지시간의 영향 I (The Effect of Sr Addition and Holding Time on Microstructure of Al-10.5%Si-2%Cu Secondary Die-casting Alloys)

  • 신상수;김명용;염길용
    • 한국주조공학회지
    • /
    • 제30권5호
    • /
    • pp.161-166
    • /
    • 2010
  • In this examination, the effect of Sr addition and holding time on microstructure of Al-10.5wt%Si-2wt%Cu secondary die-casting alloy was investigated. Degree of undercooling was improved with increasing the Sr content in this alloy. Up to 0.02wt%Sr addition, acicular and lamellar eutectic structure was observed in the microstructure. Meanwhile, the eutectic Si was modified toward the fine fibrous form by increasing Sr content with more than 0.03wt% and holding time of the melt. The well- modified alloys showed decreased eutectic silicon size from 3.25 ${\mu}m$ to less than 0.8 ${\mu}m$. From these results, the optimal strontium content and holding time were identified on the Al-10.5wt%Si-2wt%Cu secondary die-casting alloy.

용융 Al-10wt.%Si 합금의 산화피 형성에 미치는 첨가원 (The Effect of Additive Elements on the Formation of Oxide Skins of AI-10wt.% Si Alloy Melts)

  • 최재영;양정식;백영남
    • 한국표면공학회지
    • /
    • 제22권4호
    • /
    • pp.179-184
    • /
    • 1989
  • This study seeks to the morphological changes in the oxide skin of the Al-10wt.%si alloy melts. These changes depend on the oxidation time and the temperature of the molten alloy, as well as the effects of adding Mg, Cu and Ni. Thess affects observed by X-ray diffractometer(XRD) and scanning electron microscope(SEM)' Very litte oxide skins on Al-10wtwt.%Si alloy melts can be detected by XRD because it is less than the measuring capabillity of the XRD, or the formation of noncrystalline oxide skins oxide skins canbe deteced by SEM. The addition of 1%Mg and 1%Cu-1%Mg-2.5%Ni to this base alloy crystallized the structure of the oxide skins and increased the oxidation in proportion to the length of time, but adding 3% had hardiy anyaffect at all on the crystal structure of the oxide skins.

  • PDF

금속 3D 프린팅 적층 제조 공정 기반 Al-Si-Cu-Mg 합금 조합 실험 (3D-printing-based Combinatorial Experiment for Al-Si-Cu-Mg Alloys)

  • 송용욱;김정준;박수원;최현주
    • 한국분말재료학회지
    • /
    • 제29권3호
    • /
    • pp.233-239
    • /
    • 2022
  • Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.