• Title/Summary/Keyword: Al-Si-Cu

Search Result 496, Processing Time 0.027 seconds

Simultaneous Refinement of Primary and Eutectic Si in Hypereutectic Al-Si Alloys (과공정 Al-Si합금에서의 초정 및 공정 Si의 동시 미세화)

  • Park, Jae-Young;Lee, Jae-Sang;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.262-271
    • /
    • 1995
  • It is well known what is impossible to refine primary and eutectic Si simultaneously by addition of both Cu-P and Sr(or Na). Because of the formation of compound $Sr_3P_2(or Na_3P)$ in the melt, in the result, both effects disappear. In this study Al-Cu-P alloy that comprises AlP compounds inside is added in the melt with Sr simultaneously. As AlP compounds that act on nucleation sites of primary Si are not formed but added directly an the melt, it is difficult to form $Sr_3P_2$ by reaction with Sr. Therefore it is possible to refine primary and eutectic Si simultaneously in the general casting process by use of Al-Cu-P alloy and Sr.

  • PDF

Effect of Post Deformation on the Structure and Properties of Sintered Al-Cu-SiC Composites

  • Chung, Hyung-Sik;Heo, Ryun-Min;Kim, Moon-Tae;Ahn, Jae-Hwan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1301-1302
    • /
    • 2006
  • Sintered composites of Al-8wt%Cu-10vol%SiCp were deformed by repressing or equal channel angular pressing(ECAP) at room temperature, $500^{\circ}C$ and $600^{\circ}C$. Repressing produced more densification than ECAP but resulted in much lower transverse rupture strengths. In both cases, deformation at room temperature and $500^{\circ}C$, resulted in much lower strengths than deformation at $600^{\circ}C$, and also caused the fracturing of some SiC particles. The higher bend strengths and less SiC fracturing at $600^{\circ}C$ are attributable to the presence of an Al-Cu liquid phase during deformation. The employment of copper coated SiC instead of bare SiC particles for preparing the composites was found not improving the properties.

  • PDF

Temperature-Programmed Reduction of Copper Oxide Supported on ${\gamma}-Al_2O_3$ and $SiO_2$ (${\gamma}-Al_2O_3$$SiO_2$에 입혀진 산화 구리의 승온 환원)

  • Hwa-Gyung Lee;Chong-Soo Han;Min-Soo Cho;Kae-Soo Lee;Hakze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.415-422
    • /
    • 1986
  • The metal-support interaction of copper oxide supported on ${\gamma}$-alumina and silica was studied by X-ray diffraction (XRD) and temperature-programmed reduction(TPR). It was found that XRD pattern of CuO can not be observed up to 5.0wt % copper content for CuO/${\gamma}-Al_2O_3$ while CuO/$SiO_2$ sample shows the CuO pattern even at 2.5wt% copper content. $H_2-$TPR of CuO/${\gamma}-Al_2O_3$ system shows four major peaks at 145${\circ}C$, 185${\circ}C$, 210${\circ}C$, and 250${\circ}C$. In the case of CuO/$SiO_2$, a large peak at 250${\circ}C$ was appeared accompanying a small peak at 425${\circ}C$. Comparing the TPR peaks with that of copper aluminate which was prepared from the calcination of CuO/${\gamma}-Al_2O_3$ at 1000${\circ}C$, the peaks at around 145${\circ}C$, 200${\circ}C$ (185${\circ}C$ and 210${\circ}C$), and 250${\circ}C$ were corresponded to $Cu^+$ ion in CuO interacting ${\gamma}-Al_2O_3$, $Cu^+$ ions in defect sites of ${\gamma}-Al_2O_3$ and $Cu^{2+}$ ion in the bulk CuO layer, respectively. From the results, it was concluded that there is considerable metal-support interaction in CuO on ${\gamma}-Al_2O_3$ and the interaction results in a stabilization of $Cu^+$ ion in the system.

  • PDF

Effect of Samarium Addition on Microstructure and Thermal Conductivity of Al-Si-Cu Aluminum Alloy (Sm 첨가에 따른 Al-Si-Cu 알루미늄 합금의 미세조직 및 열전도도 변화)

  • Choi, Jin-Ju;Kang, Yubin;Im, Byoungyong;Lee, Chan-Gi;Kim, Hangoo;Park, Kwang Hoon;Kim, Dae-Guen
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.31-37
    • /
    • 2020
  • In this study, the effects of Sm addition (0, 0.05, 0.2, 0.5 wt%) on the microstructure, hardness, and electrical and thermal conductivity of Al-11Si-1.5Cu aluminum alloy were investigated. As a result of Sm addition, increment in the amount of α-Al and refinement of primary Si from 70 to 10 ㎛ were observed due to eutectic temperature depression. On the other hand, Sm was less effective at refining eutectic Si because of insufficient addition. The phase analysis results indicated that Sm-rich intermetallic phases such as Al-Fe-Mg-Si and Al-Si-Cu formed and led to decrements in the amount of primary Si and eutectic Si. These microstructure changes affected not only the hardness but also the electrical and thermal conductivity. When 0.5 wt% Sm was added to the alloy, hardness increased from 84.4 to 91.3 Hv, and electric conductivity increased from 15.14 to 16.97 MS/m. Thermal conductivity greatly increased from 133 to 157 W/m·K.

A Study on the Surface Properties of Al Alloys after Reactive Ion Etching (Al 합금의 반응성 이온 식각후 표면 특성 연구)

  • Kim, Chang-Il;Kwon, Kwang-Ho;Park, Hyung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.338-341
    • /
    • 1995
  • The surface properties after plasma etching of Al(Si, Cu) solutions using the chemistries of chlorinated and fluorinated gases with varying the etching time have been investigated using X-ray Photoelectron Spectroscopy. Impurities of C, Cl, F and O etc are observed on the etched Al(Si, Cu) films. After 95% etching, aluminum and silicon show metallic states and oxized (partially chlorinated) states, copper shows Cu metallic states and Cu-Clx(x$CuCl_x$ (x$CuCl_x$ (1

  • PDF

Selective Chemical Dealloying for Fabrication of Surface Porous Al88Cu6Si6 Eutectic Alloy (화학적 침출법을 통한 표면 다공성 Al-Cu-Si 공정 합금 제조)

  • Lee, Joonhak;Kim, Jungtae;Im, Soohyun;Park, Hyejin;Shin, Hojung;Park, Kyuhyun;Qian, M.;Kim, Kibeum
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.227-232
    • /
    • 2013
  • Al-based alloys have recently attracted considerable interest as structural materials and light weight materials due to their excellent physical and mechanical properties. For the investigation of the potential of Al-based alloys, a surface porous $Al_{88}Cu_6Si_6$ eutectic alloy has been fabricated through a chemical leaching process. The formation and microstructure of the surface porous $Al_{88}Cu_6Si_6$ eutectic alloy have been investigated using X-ray diffraction and scanning electron microscopy. The $Al_{88}Cu_6Si_6$ eutectic alloy is composed of an ${\alpha}$-Al dendrite phase and a single eutectic phase of $Al_2Cu$ and ${\alpha}$-Al. We intended to remove only the ${\alpha}$-Al phase and then the $Al_2Cu$ phase would form a porous structure on the surface with open pores. Both acidic and alkaline aqueous chemical solutions were used with various concentrations to modify the influence on the microstructure and the overall chemical reaction was carried out for 24 hr. A homogeneous open porous structure on the surface was revealed via selective chemical leaching with a $H_2SO_4$ solution. Only the ${\alpha}$-Al phase was successfully leached while the morphology of the $Al_2Cu$ phase was maintained. The pore size was in a range of $1{\sim}5{\mu}m$ and the dealloying depth was nearly $3{\mu}m$. However, under an alkaline NaOH, aqueous solution, an inhomogeneous porous structure on the surface was formed with a 5 wt% NaOH solution and the morphology of the $Al_2Cu$ phase was not preserved. In addition, the sample that was leached by using a 7 wt% NaOH solution crumbled. Al extracted from the Al2Cu phase as ${\alpha}$-Al phase was dealloyed, and increasing concentration of NaOH strongly influenced the morphology of the $Al_2Cu$ phase and sample statement.

Effect of Cu and Mg on Forging Property and Mechanical Behavior of Powder Forged Al-Si-Fe Based Alloy

  • Lee, Dong-Suk;Jung, Taek-Kyun;Kim, Mok-Soon;Kim, Won-Yong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1000-1001
    • /
    • 2006
  • Two atomized alloy powders were pre-compacted by cold and subsequently hot forged at temperatures ranging from 653K to 845K. The addition of Cu and Mg causes a decrease in the eutectic reaction temperature of Al-10Si-5Fe-1Zr alloy from 841K to 786K and results in a decrease of flow stress at the given forging temperature. TEM observation revealed that in addition to Al-Fe based intermetallics, $Al_2Cu$ and $Al_2CuMg$ intermetallics appeared. The volume fraction of intermetallic dispersoids increased by the addition of Cu and Mg. Compressive strength of the present alloys was closely related to the volume fraction of intermetallic dispersoids.

  • PDF

Effect of Si Addition on the Microstructure of AI-Cu-Si Alloy for Thin Film Metallization (반도체 metallization용 Al-Cu 합금의 미세구조 천이에 미치는 Si 첨가영향)

  • Park, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.237-241
    • /
    • 2000
  • The effects of Si addition on the precipitation processes of in Al-Cu-Si alloy films were studied by the transmission electron microscopy. Deposition of an Al-1.5Cu-1.5Si (wt. %) film at $305^{\circ}C$ resulted in formation of fine, uniformly distributed spherical $\theta$-phase particles due to the precipitation of the $\theta$ and Si phase particles during deposition. For deposition at $435^{\circ}C$, fine $\theta$-phase particles precipitated during wafer cooldown, while coarse Si nodules formed at the sublayer interface during deposition. The film susceptibility to corrosion is discussed in relation to the film microstructure and deposition temperature.

  • PDF

The Effect of Sr Addition and Holding Time on Mechanical Property and Electrical Conductivity of Al-10.5%Si-2%Cu Secondary Die-casting Alloys (Al-10.5wt%Si-2wt%Cu 다이 캐스팅용 2차 지금의 기계적 특성과 전기전도도에 미치는 Sr 양과 유지시간의 영향 II)

  • Shin, Sang-Soo;Kim, Myung-Yong;Yeom, Gil-Yong
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.205-209
    • /
    • 2010
  • This study evaluates the influence of strontium addition and holding time on mechanical properties for Al-10.5wt%Si-2wt%Cu secondary die-casting alloy and the measured electrical conductivity of modified alloys. A general improvement in the mechanical properties of the alloy was observed after adding the strontium. Ultimate tensile strength, elongation and electrical conductivity of modified alloys were improved by increasing strontium content and holding time. From these results, the optimal strontium content and holding time were identified on the mechanical properties of Al-10.5wt%Si-2wt%Cu secondary die-casting alloys.