• Title/Summary/Keyword: Al-Si coated

Search Result 192, Processing Time 0.028 seconds

Effect of Binder Glass Crystallization on Electrical Properties in $RuO_2$-Thick Film Resistor

  • Sungmin Kwon;Kim, Cheol-Young
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.33-38
    • /
    • 1996
  • In thick film resistors, the characteristics of the frit and the reaction between glass frit and conductor material play an important role for their electrical properties. In this study, various glass frits in the system of $60RO{\cdot}20SiO_2$ $15B_2O_3{\cdot}5Al_2O_3$(RO=PbO, ZnO, CdO; mole%) were mixed with $RuO_2$ and coated on 96% alumina substrate. Only the glass frit containing PbO was reacted with $RuO_2$in$RuO_{2+}$-thick film resistor and produced the new crystalline phase of $Pb_2Ru_2O_{65}$. Their electrical resistivities strongly depend on the amount of $Pb_2Ru_2O_{65}$ crystalline phase obtained, which varied with firing temperature. The sheet resistivities of these resistors were varied from $10^3\; to\; 10^6\;{\Omega}/{\Box}$ depending on heat treatment, and the absolute value of TCR was decreased as the heat treatment temperature increaed. However, $RuO_2$ did not reacted with the glass frits containing ZnO nor CdO, and the resulting showed very high sheet resistivities.

  • PDF

Temperature Dependence of the $SrTiO_3$ Capacitor Thin Films Deposited by RF Magnetron Sputtering (고주파 마그네트론 스퍼터링에 의한 $SrTiO_3$ 캐패시터 박막의 온도 의존성)

  • Oh, Gum-Kon;Lee, Woo-Sun;Kim, Nam-Oh;Kim, Jai-Min;Lee, Byung-Sung;Kim, Sang-Yong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.429-435
    • /
    • 1999
  • The $SrTiO_3$ thin films were prepared on Ag/TiN-coated and p-type bare Si(100) substrates by r.f. magnetron sputtering deposition technique. The electrical properties of the deposited films were investigated, which controlling deposition parameters such as substrate temperature and film thickness. The electrical properties ofthe $SrTiO_3$ films were measured using the capacitance-voltage(C-V) technique. The thickness dependence of the electrical properties of the $SrTiO_3$ films was analyzed of the connection with the films in series. The substrate affected the crystal structure and texture characteristics of the $SrTiO_3$ films. The resistivity of the film, sandwiched between Al and Ag films was measured, as a function of the temperature.

  • PDF

Formation of Coatings on SKD11 Core Mold Steel by Plasma Electrolytic Oxidation (코어금형용강 SKD11의 플라즈마 전해산화에 의한 피막 형성)

  • Kim, S.M.;Lee, T.H.;Kang, S.J.;Cho, Y.H.;Koo, J.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.209-216
    • /
    • 2011
  • Surface coatings were prepared on SKD11 core mold steel by plasma electrolytic oxidation (PEO). The coatings were investigated about the formation condition of core mold steel. SKD11 were coated by PEO in a mix solution of Sodium Aluminate $NaAlO_2$ (10 g/l), Sodium Silicate powder $Na_2SiO_3$ (0.5 g/l), Sodium tungstate dihydrate $Na_2WO_42H_2O$ (0.5 g/l) at less than $30^{\circ}C$. The electrical condition were voltage : 500~600 V; Pulse : 600~1800 Hz; current density 15~20 $A/dm^2$ various time : 3 min~40 min. The coatings surface morphology, cross-section, friction coefficient, hardness were investigated. The PEO coatings on SKD11 core mold steel showed the extended service life.

Study on the Characteristics of Electroplated Solder: Comparison of Sn-Cu and Sn-Pb Bumps (무연 도금 솔더의 특성 연구: Sn-Cu 및 Sn-Pb 범프의 비교)

  • 정석원;정재필
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.5
    • /
    • pp.386-392
    • /
    • 2003
  • The electroplating process for a solder bump which can be applied for a flip chip was studied. Si-wafer was used for an experimental substrate, and the substrate were coated with UBM (Under Bump Metallization) of Al(400 nm)/Cu(300 nm)Ni(400 nm)/Au(20 nm) subsequently. The compositions of the bump were Sn-Cu and eutectic Sn-Pb, and characteristics of two bumps were compared. Experimental results showed that the electroplated thickness of the solders were increased with time, and the increasing rates were TEX>$0.45 <\mu\textrm{m}$/min for the Sn-Cu and $ 0.35\mu\textrm{m}$/min for the Sn-Pb. In the case of Sn-Cu, electroplating rate increased from 0.25 to $2.7\mu\textrm{m}$/min with increasing current density from 1 to 8.5 $A/dm^2$. In the case of Sn-Pb the rate increased until the current density became $4 A/dm^2$, and after that current density the rate maintains constant value of $0.62\mu\textrm{m}$/min. The electro plated bumps were air reflowed to form spherical bumps, and their bonded shear strengths were evaluated. The shear strength reached at the reflow time of 10 sec, and the strength was of 113 gf for Sn-Cu and 120 gf for Sn-Pb.

Analysis on Constituent Elements and Microstructure of Fiberglass Splint and Cast

  • Ham, Joo Hyun;Jung, Han Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.433-438
    • /
    • 2021
  • In this study, microstructural characteristics and constituent elements of fiberglass splint and cast are examined using a scanning electron microscope and an energy dispersive X-ray spectrometer. As observed by the scanning electron microscope, fiberglass splint and cast had a porous structure with many bundles of fiberglass textures well assembled. Spaces between bundles of the fiberglass splint are triangular or elliptical shaped and the long-axis diameter is measured at about 1 mm. The thickness of fiber bundles covered with plaster is measured at 600 ㎛ and the diameter of a single strand of fiberglass is up to 10 ㎛. The thickness of the fiberglass bundle of the fiberglass splint is measured at about 700 ㎛. Spaces between bundles are formed in the shape of triangles with gentle edges and long-axis diameter of up to 1.4 mm, which is larger than that of the splint. The thickness of a single strand of fiberglass of the plaster-coated cast is 11.5 ㎛, which is thicker than that of fiberglass of the splint. As a result of analyzing constituent elements of the fiberglass cast and the splint with an energy dispersive X-ray spectrometer, Ca, Si, and Al components are identically detected. This result shows that the fiberglass cast has a smoother surface with hardened plaster than the fiberglass splint. The thickness of the fiberglass bundle and the thickness of a single strand of the fiberglass are also larger than those of the fiberglass splint.

Effect of Vapor-Cooled Heat Stations in a Cryogenic Vessel (극저온액체 저장용기에서 열전도 차폐단의 영향)

  • Kim, S.Y.;Kang, B.H.;Choi, H.J.
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.4
    • /
    • pp.169-176
    • /
    • 1998
  • An experimental study on effect of vapor-cooled heat stations in a 5.5 liter cryogenic vessel has been performed. The cryogenic vessel is made of stainless steel of thickness of 1mm and insulated by the combined insulation of vacuum, MLI(multi-layer insulation) and vapor-cooled radiation shield. Vapor-cooled heat stations are also constructed based on the 1-dimensional thermal analysis to reduce the heat inleak through a filling tube. Thermal analysis indicates that the vapor-cooled heat stations can substantially enhance the performance of vessel for cryogenic fluids with high $C_p/h_{fg}$ where $C_p$ the specific heat and $h_{fg}$ the heat of vaporization, such as $LH_2$ and LHe. The experimental results for $LN_2$ shows that the total heat inleak into inner vessel consists of 14% radiation and 86% conduction through the filling tube. Therefore, it is expected that the conduction heat in leak of the vessel for high $C_p/h_{fg}$ cryogenic fluids can be significantly reduced. powders. The amount of copper coating was 20wt%. In order to examine corrosion behavior of the electrodes, the corrosion current and the current density, in 6M KOH aqueous solution after removal of oxygen in the solution, were measured by potentiodynamic and cyclic voltamo methods. The results showed that Co in the alloy increased corrosion resistance of the electrode whereas Ni decreased the stability of the electrode during the charge-discharge cycles. The electrode used Si sealant as a binder showed a lower corrosion current density than the electrode used PTFE and the electrode used Cu-coated alloy powders showed the best corrosion resistance.

  • PDF

PLASMA POLYMERIZED THIN FILMS GROWN BY PECVD METHOD AND COMPARISON OF THEIR ELECTROCHEMICAL PROPERTIES

  • I.S. Bae;S.H. Cho;Park, Z. T.;Kim, J.G.;B. Y. Hong;J.H. Boo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.119-119
    • /
    • 2003
  • Plasma polymerized organic thin films were deposited on Si(100) glass and Copper substrates at 25 ∼ 100 $^{\circ}C$ using cyclohexane and ethylcyclohexane precursors by PECVD method. In order to compare physical and electrochemical properties of the as-grown thin films, the effects of the RF plasma power in the range of 20∼50 W and deposition temperature on both corrosion protection efficiency and physical properties were studied. We found that the corrosion protection efficiency (P$\_$k/), which is one of the important factors for corrosion protection in the interlayer dielectrics of microelectronic devices application, was increased with increasing RF power. The highest P$\_$k/ value of plasma polymerized ethylcyclohexane film (92.1% at 50 W) was higher than that of the plasma polymerized cyclohexane film (85.26% at 50 W), indicating inhibition of oxygen reduction. Impedance analyzer was utilized for the determination of I-V curve for leakage current density and C-V for dielectric constants. To obtain C-V curve, we used a MIM structure of metal(Al)-insulator(plasma polymerized thin film)-metal(Pt) structure. Al as the electrode was evaporated on the ethylcyclohexane films that grew on Pt coated silicon substrates, and the dielectric constants of the as-grown films were then calculated from C-V data measured at 1㎒. From the electrical property measurements such as I-V ana C-V characteristics, the minimum dielectric constant and the best leakage current of ethylcyclohexane thin films were obtained to be about 3.11 and 5 ${\times}$ 10$\^$-12/ A/$\textrm{cm}^2$ and cyclohexane thin films were obtained to be about 2.3 and 8 ${\times}$ 10$\^$-12/ A/$\textrm{cm}^2$.

  • PDF

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

Electrical Properties of $(Sr_{0.85}Ca_{0.15})TiO_3$ Thin Films with Top Electrodes (상부전극에 따른 $(Sr_{0.85}Ca_{0.15})TiO_3$ 박막의 전기적 특성)

  • Jo, Chun-Nam;Kim, Jin-Sa;Sin, Cheol-Gi;O, Jae-Han;Choe, Un-Sik;Kim, Chung-Hyeok;Lee, Jun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.107-112
    • /
    • 2000
  • $(Sr_{0.85}Ca_{0.15})TiO_3$(SCT) thin films were deposited on Pt-coated $TiO_2/SiO_2/Si$ wafer by the rf sputtering method. Experiments were conducted to investigate the electrical properties of SCT thin films with various top electrodes. Various top electrodes as Pt, Al, Ag, Cu were deposited on SCT thin films by sputter and thermal evaporator. The characteristics of C-F and C-V of SCT thin films were not obviously varied with various top electrodes, SCT thin films annealed at $600^{\circ}C$ represents as favorable capacitance characteristics than SCT thin films not annealed, and Pt top electrode have the most high capacitance. The characteristic of I-V of SCT thin films showed that Pt top electrode revealed more less leakage current density than other electrodes, had a leakage current density below 10-8$[A/cm^2]$ until 25[V] applied voltage.

  • PDF

A Study of Properties and Coating Natural Mineral Pumice Powder of in Korea (한국산 천연 광물 부석 파우더 코팅 및 특성에 관한 연구)

  • Kim, In-Young;Noh, Ji-Min;Nam, Eun-Hee;Shin, Moon-Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.498-506
    • /
    • 2019
  • This study is based on a coating method that provides utilization value as a micronised powder for cosmetic raw materials using natural minerals buried in Bonghwa, Gyeongsangbuk-do in Korea. The mineral powder name is called Buseok, and chemical name is pumice powder. The results of a study on the efficacy of cosmetics are reported by the development of particulate powder to assess the performance of this powder. First of all, in order to coat the surface of this powder with oil, aluminum hydroxide was coated on the particulate surface and then coated with alkylsilan. In addition, it was coated with vegetable oil to prevent condensation of the powder and increase the dispersion in the oil phase. First; the particle size of pumice powder was from 10 to 50mm having porous holes on the surface of the particles. Second; The components of this powder contained $SiO_2$, $Al_2O_3$, $Fe_2O_3$, MgO, CaO, $K_2O_2$, $Na_2O$, $TiO_2$, $TiO_2$, MnO, $Cr_2O_3$, $V_2O_5$. Third: The particles of this powder have a planetary structure and are reddish-brown with porosity through SEM and TEM analysis. Fourth; the far-infrared radiation rate of this parabolic powder was $0.924{\mu}m$, and the radiative energy was $3.72{\times}102W/m^2$ and ${\mu}m$. In addition, the anion emission is 128 ION/cc, which shows that the coating remains unchanged. Based on these results, it is expected to be widely applied to basic cosmetics such as BB cream, cushion foundation, powderfect, and other color-coordinated cosmetics, sunblock cream, wash-off massage pack as an application of cosmetics. (Small and Medium Business Administration: S2601385)