• Title/Summary/Keyword: Al-Cu-Mg

Search Result 486, Processing Time 0.027 seconds

Effects of Mg and Cu Additions on Superplastic Behavior in MA Aluminum Alloys

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.435-439
    • /
    • 2018
  • MA Al alloys are examined to determine the effects of alloying of Mg and Cu and rolling on tensile deformation behavior at 748 K over a wide strain rate range($10^{-4}-10^3/s$). A powder metallurgy aluminum alloy produced from mechanically alloyed pure Al powder exhibits only a small elongation-to-failure(${\varepsilon}_f$ < ~50%) in high temperature(748 K) tensile deformation at high strain rates(${\acute{\varepsilon}}=1-10^2/s$). ${\varepsilon}_f$ in MA Al-0.5~4.0Mg alloys increases slightly with Mg content(${\varepsilon}_f={\sim}140%$ at 4 mass%). Combined addition of Mg and Cu(MA Al-1.5%Mg-4.0%Cu) is very effective for the occurrence of superplasticity(${\varepsilon}_f$ > 500%). Warm-rolling(at 393-492 K) tends to raise ${\varepsilon}_f$. Lowering the rolling-temperature is effective for increasing the ductility. The effect is rather weak in MA pure Al and MA Al-Mg alloys, but much larger in the MA Al-1.5%Mg-4.0%Cu alloy. Additions of Mg and Cu and warm-rolling of the alloy cause a remarkable reduction in the logarithm of the peak flow stress at low strain rates (${\acute{\varepsilon}}$< ~1/s) and sharpening of microstructure and smoothening of grain boundaries. Additions of Mg and Cu make the strain rate sensitivity(the m value) larger at high strain rates, and the warm-rolling may make the grain boundary sliding easier with less cavitation. Grain boundary facets are observed on the fracture surface when ${\varepsilon}_f$ is large, indicating the operation of grain boundary sliding to a large extent during superplastic deformation.

The Evaluation of Diffusivity of Lithium for Coarsening of δ' Precipitate in AI-Li-Cu-Mg-Zr Alloy (Al-Li-Cu-Mg-Zr 합금에 있어서 δ'상 조대화를 위한 Lithium의 확산계수 평가)

  • Chung, D.S.;Kim, E.S.;Cho, H.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • The evaluation and analysis of diffusivity of lithium for coarsening and coarsening kinetics of ${\delta}^{\prime}$ precipitate in Al-Li-Cu-Mg-Zr alloy aged at $170^{\circ}C$ have been investigated by transmission electron microscopy. With ageing time, ${\delta}^{\prime}$ precipitate coaesened to followed $\bar{\gamma}{\propto}t^{1/3}$ and coarsening kinetics was found to be obeyed to the Lifshitz-Slyozov-Wagner(LSW) theory and diffusivity of lithium for coarsening of ${\delta}^{\prime}$ precipitate in Al-Li-Cu-Mg-Zr alloy was obtained to be $5.85{\times}10^{-17}{\sim}1.53{\times}10^{-16}$ by experimental coarsening rate constant and various coarsening kinetic theory. Diffusivity of lithium measured by using various model but MLSW and Tsumuraya (VI) et al. model in Al-Li-Cu-Mg-Zr alloy is similar to that calculated by the Costas's diffusivity equation. It was, therefore, suggested that additing to the Cu, Mg and Zr element in Al-Li system have no great effect on diiffusivity of lithium for coarsening of ${\delta}^{\prime}$ This suggest that in matrix.

  • PDF

LACBED Observation of Strain Fields due to Precipitates, Especially S-Phase Particles in Al-Cu-Mg Alloy (Al-Cu-Mg 합금의 석출입자, 특히 S-상 입자들에 의한 변형장의 LACBED 관찰)

  • Kim, Hwang-Su
    • Applied Microscopy
    • /
    • v.37 no.2
    • /
    • pp.123-133
    • /
    • 2007
  • The strain fields due to precipitates, especially S-phase $(Al_2CuMg)$ particles in Al-2.5Cu-1.5Mg wt.% alloy were first investigated with Large Angle Convergent Beam Electron Diffraction (LACBED) method. The work involves LACBED pattern simulations to estimate possibly the strength of the strain fields. To do this the morphology of S-particle was optimized as a cylindrical shape with $a_s$ axis, and the displacement vector of strain fields was assumed to be perpendicular to $a_s$ axis. With this simple model the reasonable fittings between the observed patterns of the strain fields and simulations were obtained. And in the early aging stage of the alloy the significant strain fields were not observed. As a result of this study it is expected that the strain fields due to S-phase precipitates in the stage with maximum hardness would make a complex networks to possibly contribute to hardiness of the alloy.

Effects of Cu and Mg on Wear Properties of SiC Particulate Reinforced Al-Si Metal Matrix Composites (SiC 입자강화 Al-Si 복합재료의 내마멸성에 미치는 Cu , Mg의 영향)

  • Shim, Shang-Han;Chung, Yong-Keun;Park, In-Min
    • Journal of Korea Foundry Society
    • /
    • v.10 no.1
    • /
    • pp.43-49
    • /
    • 1990
  • The influences of Cu and Mg addition on wear properties of SiC particulate reinforced Al-Si metal(alloy) matrix composites were investigated. Metal matrix composites were prepared by combination of compocasting and hot pressing techniques. The main results obtained are as follows : 1) The composite with Mg addition exhibits letter wear resistance than that with Cu addition. It is considered that Mg addition improved wettability of matal matrix composite by the strong segregation to the SiC / Al matrix interface. 2) After homogenization treatment, it was found that the interfacial segregation of Mg was predominant, while that of Cu was not detected. 3) The SiC / Al-11Si eutectic composite exhibits better wear resistance than the SiC / Al-6Si hypoeutectic composite does. 4) It seems that the increase in the amount of Mg addition affects on the uniform dispersion of SiC particulates, on the refinement of microstructure and on age hardening and these effects cause wear resistance improvement of composites.

  • PDF

Decomposition Behavior of Secondary Solidification Phase During Heat Treatment of Squeeze Cast Al-Cu-Si-Mg (용탕단조 Al-Cu-Si-Mg합금의 열처리시 제2응고상의 분해거동)

  • Kim, Yu-Chan;Kim, Do-Hyang;Han, Yo-Sub;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.560-568
    • /
    • 1997
  • The dissolution behavior of secondary solidification phases in squeeze cast Al-3.9wt%Cu-1.5wt%Si-1.0wt%Mg has been studied using a combination of optical microscope, image analyzer, scanning electron microscope(SEM), energy dispersive spectrometer(EDS), X-ray diffractometer(XRD) and differential thermal analyzer (DTA). Special emphasis was placed on the investigation of the effects of the nonequilibrium heat treatment on the dissolution of the second solidification phases. Ascast microstructure consisted of primary solidification product of ${\alpha}-Al$ and secondary solidification products of $Al_2Cu$, $Mg_2Si$ and $Al_2CuMg$. Equilibrium and non-equilibrium solution treatments were carried out at the temperatures of $495^{\circ}C$, $502^{\circ}C$ and $515^{\circ}C$ for 3 to 5 hours. The amount of the dissolved secondary phases increased with increasing solution treatment temperature, for example, area fractions of $Al_2Cu$, $Mg_2Si$ and $Al_2CuMg$ were approximately 0%, 1.6% and 4.2% after solution treatment at $495^{\circ}C$ for 5hours, and were approximately 0%, 0.36% and 2% after solution treatment at $515^{\circ}C$ for 5hours. The best combination of tensile properties was obtained when the as-cast alloy was solution treated at $515^{\circ}C$ for 3hours followed by aging at $180^{\circ}C$ for 10 hours. Detailed DTA and TEM study showed that the strengthening behavior during aging was due to enhanced precipitation of the platelet type fine ${\theta}'$ phase.

  • PDF

Prediction of the Liquidus Temperature Curve for Hypoeutectic Al-Si-Cu-Mg Alloy (아공정 Al-Si-Cu-Mg 합금의 액상선 온도 곡선 예측)

  • Kim, Keunhak;Park, Dongsung;Oh, Seung-Jin;Jeon, Junhyub;Yoon, Sang-Il;Kim, Ki-Sun;Kim, Tae-Young;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.6
    • /
    • pp.300-306
    • /
    • 2018
  • In the present study we proposed new equations to predict the liquidus temperature curve for hypoeutectic Al-Si-Cu-Mg alloy. A thermodynamic simulation was carried out to calculate the liquidus temperature, eutectic temperature and eutectic Si concentration with different Si, Cu, and Mg contents in hypoeutectic Al-Si alloys. Regressed equations were derived using the thermodynamic simulation results by multiple regression analysis. The proposed equations were compared with the equations reported previously by other researchers and agreed better with the experimental data. The addition of Cu and Mg lowered the eutectic temperature. The eutectic Si concentration was decreased by adding Cu whereas that was increased by adding Mg. Al-Si binary phase diagram was successfully predicted with a consideration of the effect of Cu and Mg addition by using the proposed equations.

Microstructure, Tensile Strength, and High Cycle Fatigue Properties of Mg+Al2Ca added ADC12 (Al-Si-Cu) Alloy (Mg+Al2Ca 첨가 ADC12 (Al-Si-Cu) 합금의 미세조직, 인장 및 고주기 피로 특성)

  • Kim, Y.K.;Kim, M.J.;Kim, Shae K.;Yoon, Y.O.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.306-313
    • /
    • 2017
  • This study investigated the microstructure, tensile strength, and high cycle fatigue properties of ADC12 aluminum alloys with different $Mg+Al_2Ca$ contents manufactured using die casting process. Microstructural observation identified the presence of ${\alpha}-Al$, eutectic Si, $Al_2Cu$, and Fe-intermetallic phases. The increase of $Mg+Al_2Ca$ content resulted in finer pore size and decreased pore distribution. Room temperature tensile strength tests were conducted at strain rate of $1{\times}10^{-3}/sec$. For 0.6%Mg ADC12, measured UTS, YS, and El were 305.2MPa, 157.0MPa, and 2.7%, respectively. For 0.8%Mg ADC12, measured UTS, YS, and El were 311.2 MPa, 159.4 MPa, and 2.4%, respectively. Therefore, 0.8% ADC12 alloy had higher strength and slightly decreased elongation compared to 0.6% Mg ADC12. High cycle fatigue tests revealed that 0.6% Mg ADC12 alloy had a fatigue limit of 150 MPa while 0.8% Mg ADC12 had a fatigue limit of 160MPa. It was confirmed that $Mg+Al_2Ca$ added ADC12 alloy achieved finer, spherical eutectic Si particles, and $Al_2Cu$ phases with greater mechanical and fatigue properties since size and distribution of pores and shrinkage cavities decreased as $Mg+Al_2Ca$ content increased.

Effect of Mold Coatings on the Macrostructures of Cu-5%Sn Alloy (Cu-5% Sn합금(合金)의 주조조직(鑄造組織)에 미치는 도형재(塗型材)의 영향(影響)에 관(關)한 연구(硏究))

  • Choi, Young-Sung;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.5 no.3
    • /
    • pp.19-26
    • /
    • 1985
  • This study has been carried out to examine into wettability of Cu-5%Sn alloy in $Al_2O_3$, MgO, $SiO_2$ and graphite, respectively and investigated into the change in macrostructure of Cu-5%Sn alloy according to kind and mixing rate of mold-coating. The results obtained from the experiment are summerized as follows; 1. Cu Cu-5%Sn alloy, wettabilities of $Al_2O_3$ and MgO were good, on the other hand, wettabilities of $SiO_2$ and graphite were bad. 2. The fine equiaxed zone was created because of the role of $Al_2O_3$ and MgO as preferential nucleation sites. 3. Notwithstanding change of mixing rate of $SiO_2$ in mold coating the equixed zone was not created. 4. The area of equiaxed zone was varied according to mixing rate in the case of using $Al_2O_3$ and MgO in mold-coating.

  • PDF

Investigations on electron beam weldability of AlZnMgCu0.5 alloys (AlZnMgCu0.5 합금의 Electron Beam 용접성에 관한 연구)

  • 배석천
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.166-177
    • /
    • 1997
  • The high strength AlZnMgCu0.5 alloy is a light metal with good age hardenability, and has a high tensile and yielding strength. Therefore, it can be used for structures requiring high speciple strength. Even though high strength AlZnMgCu alloy has good mechanical properties, it has a lot of problems in TIG and MIG welding processes. Since lots of high heat absorption is introduced into the weldment during TIG and MIG processes, the microstructural variation and hot cracks take place in heat affected zone. Therefore, the mechanical properties of high strength AlZnMgCu0.5 alloy can be degraded in weldment and heat affected zone. Welding process utilizing high density heat source such as electron beam should be developed to reduce pore and hot cracking, whichare usually accompanied by MIG and TIG welding processes. In this work, electron beam welding process were used with or without AlMg4.5Mn as filler material to avoid the degradation of mechanical properties. Mechanical and metallurgical characteristics were also studied in electron beam weldment and heat affected zone. Moreover hot cracking mechanism was also investigated.

  • PDF

Effect of Sc Addition on Microstructure, Electrical Conductivity, Thermal Conductivity and Mechanical Properties of Al-2Zn-1Cu-0.3Mg Based Alloy (Al-2Zn-1Cu-0.3Mg합금의 Sc첨가에 따른 미세조직, 전기전도도, 열전도도 및 기계적 특성 변화)

  • Na, Sang-Su;Kim, Yong-Ho;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.542-549
    • /
    • 2020
  • Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 ㎛; however, this value drops to 914 and 529 ㎛ with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the as-extruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.