• Title/Summary/Keyword: Al-Cu electrode

Search Result 83, Processing Time 0.029 seconds

Influence of Conducting Particle on the Breakdown Phenomena of $SF_6$ gas in Gas Insulated System ([$SF_6$] 가스 절연기기내에 도전성 금속이물 존재시 섬락전압에 미치는 영향)

  • Lee, B.W.;Ham, G.H.;Kim, I.S.;Koo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1687-1689
    • /
    • 1998
  • In this work, the behaviours of conducting wire type particles within the coaxial electrode gap energized with high ac voltage have been systematically investigated using charge simulation method. For this, spheroidal charge is adopted as a image charge for the CSM analysis in order to calculate the acquired charge of the particles which are erected on the surface of the outer electrode. For this purpose, the effects of the lengths and diameters of Cu, Al particles in gas insulated system have been studied by a numerical computation and particle lifting voltage, lifting field, breakdown voltage, acquired charge and travelling distance have been considered. From this, we understand that the particle behaviours have different characteristics according to the particle lengths and diameters. And a possible countermeasure, based on the proposed simulation, has been provided with a view to estimating the flashover voltage of $SF_6$ gas under the 1 atm.

  • PDF

A Study on Electric Properties of Polyamide Film due to Temperature Change

  • Lee, Sung Ill
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • In this study, we measured the leakage current at $30{\sim}80^{\circ}C$ and $90{\sim}170^{\circ}C$ under a voltage of 200~980 V applied to samples (ordinary temperature) and polyamide film specimens degraded at $170^{\circ}C$ for 20 minute respectively. After the specimen was degraded at $130^{\circ}C$ and $50^{\circ}C$, a voltage of 200 to 800 V was applied for 10 to 60 minutes. The measurement of the leakage current resulted in the following conclusions. In the case of using Al and Cu as the main electrode, it was confirmed that the leakage current also increased in high temperatures as the voltage increased. Regardless of the type of main electrode, when the temperature was constant at $130^{\circ}C$ and $50^{\circ}C$, the leakage current increased as the voltage increased, and gradually decreased with time. As a result of the FTIR measurement, the main absorption of the infrared absorption spectrum was C=O at about $1650cm^{-1}$ and N-H diagonal vibration occurred at around $1550cm^{-1}$. There was no change in the material, so no effect of temperature was observed. By the results of SEM measurements, as the temperature of degradation increases, cracks in the specimen disappear. This may be because the amide bond (-CO-NH-) is absorbed by the material.

Electrodes for contact electric welding of aluminium alloys

  • Bondar, M.P.;Moon, J.G.
    • Proceedings of the KWS Conference
    • /
    • 1997.10a
    • /
    • pp.184-193
    • /
    • 1997
  • Aluminium and aluminium alloys have the high electrical and heat conductivity. It gives rise to difficulties for a choice of electrodes material for their contact electric welding. This paper describes the investigations performed to solve the above problem. The purpose of this investigation was to obtain dispersion-hardening alloys by the internal oxidation method, to optimize their contents and treatment modes, to produce electrodes of these alloys and to test them. The strengthing effect of alloys with oxide particles depends on their size stability at high temperatures. Despite of the fact, that oxides are the most stable of all the non-metallic phases their coagulation takes place. Based on the early results, we chose two types of alloys, first No. 1 Cu - 0,4%Al and second No. 2 Cu - 0,2%Be for production of electrodes. These alloys had not additional alloying elements. These alloys were prepared as 1 mm plates and flake-formed 200 m thick, and also No. 1 as a powder of size 100 mkm (received from Korea). The large samples for electrodes were produced by three methods : explosive welding method, dynamic one including the explosion compression of electrode blank and the quasi-dynamic method including the high-speed compression of dense briquest and the further hot extrusion of a rod.

  • PDF

PEMFC Operation Connected with Methanol Reformer System

  • Lee, Jung-Hyun;Park, Sang-Sun;Shul, Yong-Gun;Park, Jong-Man;Kim, Dong-Hyun;Kim, Ha-Suck;Yoo, Seung-Eul
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.303-307
    • /
    • 2008
  • The studies on integrated operation of fuel cell with fuel processor are very essential prior to its commercialization. In this study, Polymer Electrolyte Membrane Fuel Cell (PEMFC) was operated with a fuel processor, which is mainly composed of two parts, methanol steam reforming reaction and preferential oxidation (PROX). In fuel processor, ICI 33-5 (CuO 50%, ZnO 33%, $Al_2O_3$ 8%, BET surface area: $66\;m^2g^{-1}$) catalyst and CuO-$CeO_2$ catalyst were used for methanol steam reforming, preferential oxidation (PROX) respectively. PEMFC was operated by hydrogen fuel generated from fuel processor. The resulting gas from PROX reactor is used to operate PEMFC equipped with our prepared anode and cathode catalyst. PtRu/C catalyst gives more tolerance to CO.

Fabrication of the interface-treated ramp-edge Josephson junctions using Sr$_2AlTaO_6$ insulating layers (Sr$_2AlTaO_6$ 절연막을 이용한 계면처리된 경사형 모서리 조셉슨 접합의 제작)

  • Choi, Chi-Hong;Sung, Gun-Yong;Han, Seok-Kil;Suh, Jeong-Dae;Kang, Kwang-Yong
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.63-66
    • /
    • 1999
  • We fabricated ramp-edge Josephson junctions with barriers formed by interface treatments instead of epitaxially grown barrier layers. Low-dielectric Sr$_2AITaO_6$(SAT) layer was used as an ion-milling mask as well as an insulating layer for the ramp-edge junctions. An ion-milled YBa$_2Cu_3O_{7-x}$ (YBCO)-edge surface was not exposed to solvent through all fabrication procedures. The barriers were produced by structural modification at the bottom YBCO edge using plasma treatment prior to deposition of the top YBCO electrode. We investigated the effects of pre-annealing and post-annealing on the characteristics of the interface-treated Josephson junctions. The junction parameters were improved by using in-situ RF plasma cleaning treatment.

  • PDF

Characterization of instability in a-Si:H TFT LCD utilizing copper as electrodes

  • Kuan, Yung-Chia;Liang, Shuo-Wei;Chiu, Hsian-Kun;Sun, Kuo-Sheng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.747-751
    • /
    • 2006
  • The hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) with copper as source and drain electrode has been fabricated to obtain its transfer characteristics and stressed with positive and negative bias to investigate the instability variation comparing to conventional MoW-Al based TFT device. The results show that there is no copper diffusion into active layer of a-Si:H TFT, even during the thermal process. In addition, a 15-inch XGA a Si:H TFT LCD display utilizing Cu as gate electrodes has been developed.

  • PDF

Effect of $Al_2O_3$ Particle Size on Thermal Properties of Glass-Ceramics for LTCC Material (저온동시소성용 결정화 유리의 필러 사이즈가 열적 특성에 미치는 영향)

  • Kim, Jin-Ho;Hwang, Seong-Jin;Lee, Sang-Wook;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.281-281
    • /
    • 2007
  • Low Temperature Co-fired Ceramic (LTCC) technology has been used in electronic device for various functions. LTCC technology is to fire dielectric ceramic and a conductive electrode such as Ag or Cu thick film below the temperature of $900^{\circ}C$ simultaneously. The glass-ceramic has been widely used for LTCC materials due to its low sintering temperature, high mechanical properties and low dielectric constants. To obtain the high strength, addition of filler, the microstructure should have various crystals and low pores in a composite. In this study, two glass frits were mixed with different alumina size(0.5, 2, 3.7um) and sintered at the range of $850{\sim}950^{\circ}C$. The microstructure, crystal phases, thermal and mechanical properties of the composites were investigated using FE-SEM, XRD, TG-DTA, Dilatomer. When the particle size of $Al_2O_3$ filler increased, the starting temperatures for the densification of the sintered bodies, onset point of crystallization, peak crystallization temperature in the glass-ceramic composites decreased gradually. After sintered at $900^{\circ}C$, the glass frits were crystallized as $CaAl_2Si_2O_8\;and\;CaMgSi_2O_6$. The purpose of our study is to understand the relationship between the $Al_2O_3$ particle size and thermal properties in composites.

  • PDF

Electrochemical Properties of Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex Alloy Electrodes (Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex 합금 전극의 전기화학적 특성)

  • Song, MyoungYoup;Kwon, IkHyun;Lee, DongSub
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.3
    • /
    • pp.181-189
    • /
    • 2002
  • A series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22, and 0.30) alloys are prepared and their oystal structure and P-C-T curves are examined. The electrochemical properties of these allqys such as activation conditions, discharge capacity, cycling performance are also investigated. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22 and 0.30) have the C14 Laves phase hexagonal structure. The electrode was activated by the hot-charging treatment. The best activation conditions were the current density 120 mA/g and the hot-charging time 12h at $80^{\circ}C$ in the case of the alloy with x=0.00. The discharge capacity increased rapidly until the fourth cycle and then decreased. The discharge capacity increased again from the 13th cycle, arriving at 234 mAh/g at the 50th cycle. The discharge capacily just after activation decreases with the increase in the amount of the substituted Fe but the cycling performance is improved. The discharge capacity after activation of the alloy with x=0.00 is 157 mAh/g at the current density 120 mA/g. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Fe_{0.15}$ is a good composition with a medium quantity of discharge capacities and a good cycling performance. The ICP analysis of the electrolyte for these electrodes after 50 charge-discharge cycles shows that the concentrations of V and Zr are relatively high. Another series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}M_{0.15}$ (M = Fe, Co, Cu, Mo and Al) alloys are prepared. They also have the C14 Laves phase hexagonal structure. The alloys with M = Co and Fe have relatively larger hydrogen storage capacities. The discharge capacities just after activation are relatively large in the case of the alloys with M = Al and Cu. They are 212 and 170 mAh/g, respectivety, at the current density 120mA/g. The $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Co_{0.15}$ alloy is the best one with a relatively large discharge capacity and a good cycling performance.

Fabrication of P-type Transparent Oxide Semiconductor SrCu2O2 Thin Films by RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 p 타입 투명전도 산화물 SrCu2O2 박막의 제조)

  • Seok, Hye-Won;Kim, Sei-Ki;Lee, Hyun-Seok;Lim, Tae-Young;Hwang, Jong-Hee;Choi, Duck-Kyun
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.676-680
    • /
    • 2010
  • Most TCOs such as ITO, AZO(Al-doped ZnO), FTO(F-doped $SnO_2$) etc., which have been widely used in LCD, touch panel, solar cell, and organic LEDs etc. as transparent electrode material reveal n-type conductivity. But in order to realize transparent circuit, transparent p-n junction, and introduction of transparent p-type materials are prerequisite. Additional prerequisite condition is optical transparency in visible spectral region. Oxide based materials usually have a wide optical bandgap more than ~3.0 eV. In this study, single-phase transparent semiconductor of $SrCu_2O_2$, which shows p-type conductivity, have been synthesized by 2-step solid state reaction at $950^{\circ}C$ under $N_2$ atmosphere, and single-phase $SrCu_2O_2$ thin films of p-type TCOs have been deposited by RF magnetron sputtering on alkali-free glass substrate from single-phase target at $500^{\circ}C$, 1% $H_2$/(Ar + $H_2$) atmosphere. 3% $H_2$/(Ar + $H_2$) resulted in formation of second phases. Hall measurements confirmed the p-type nature of the fabricated $SrCu_2O_2$ thin films. The electrical conductivity, mobility of carrier and carrier density $5.27{\times}10^{-2}S/cm$, $2.2cm^2$/Vs, $1.53{\times}10^{17}/cm^3$ a room temperature, respectively. Transmittance and optical band-gap of the $SrCu_2O_2$ thin films revealed 62% at 550 nm and 3.28 eV. The electrical and optical properties of the obtained $SrCu_2O_2$ thin films deposited by RF magnetron sputtering were compared with those deposited by PLD and e-beam.

Surface state Electrons as a 2-dimensional Electron System

  • Hasegawa, Yukio
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.156-156
    • /
    • 2000
  • Recently, the surface electronic states have attracted much attention since their standing wave patterns created around steps, defects, and adsorbates on noble metal surfaces such as Au(111), Ag(110), and Cu(111) were observed by scanning tunneling microscopy (STM). As a typical example, a striking circular pattern of "Quantum corral" observed by Crommie, Lutz, and Eigler, covers a number of text books of quantum mechanics, demonstrating a wavy nature of electrons. After the discoveries, similar standing waves patterns have been observed on other metal and demiconductor surfaces and even on a side polane of nano-tubes. With an expectation that the surface states could be utilized as one of ideal cases for studying two dimensionakl (sD) electronic system, various properties, such as mean free path / life time of the electronic states, have been characterized based on an analysis of standing wave patterns, . for the 2D electron system, electron density is one of the most importnat parameters which determines the properties on it. One advantage of conventional 2D electron system, such as the ones realized at AlGaAs/GaAs and SiO2/Si interfaces, is their controllability of the electrondensity. It can be changed and controlled by a factor of orders through an application of voltage on the gate electrode. On the other hand, changing the leectron density of the surface-state 2D electron system is not simple. On ewqy to change the electron density of the surface-state 2D electron system is not simple. One way to change the electron density is to deposit other elements on the system. it has been known that Pd(111) surface has unoccupied surface states whose energy level is just above Fermi level. Recently, we found that by depositing Pd on Cu(111) surface, occupied surface states of Cu(111) is lifted up, crossing at Fermi level around 2ML, and approaches to the intrinsic Pd surface states with a increase in thickness. Electron density occupied in the states is thus gradually reduced by Pd deposition. Park et al. also observed a change in Fermi wave number of the surface states of Cu(111) by deposition of Xe layer on it, which suggests another possible way of changing electron density. In this talk, after a brief review of recent progress in a study of standing weaves by STM, I will discuss about how the electron density can be changed and controlled and feasibility of using the surface states for a study of 2D electron system. One of the most important advantage of the surface-state 2D electron system is that one can directly and easily access to the system with a high spatial resolution by STM/AFM.y STM/AFM.

  • PDF