• Title/Summary/Keyword: Al-0.7Mn

Search Result 187, Processing Time 0.028 seconds

The effects of rolling process on microstructures and high temperature tensile properties of Al-Mg alloy (Al-Mg합금의 압연변수에 다른 미세구조의 변화와 고온인장특성)

  • Kim, Tae-Kue;Jeon, C.H.;Kwun, S.I.;Park, Jong-Woo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.2
    • /
    • pp.81-92
    • /
    • 1997
  • The effect of alloying elements, precipitate size, its distribution, and dislocation substructure resulted from warm rolling or cold rolling in the superplastic Al-Mg alloy system was investigated. One of the major requirements for fine structure superplasticity is that the grain size should be very small. Fine grain structure is controlled by the dislocation substructure and the dynamic recrystallization during hot or warm working. The recovery of Al-Mg base alloys was constrained resulting in relatively high dislocation density when the alloys were warm rolled. In particular, Al-Mg-Zr alloy exhibited the smallest sub-grain size among Al-Mg alloys containing Mn, Cu, Zr as a third element. The Al-Mg-Mn alloy cold rolled 80% after hot rolling showed the maximun strain rate sensitivity exponent, m, of 0.75 under strain rate of $7.1{\times}10^{-4}/s$ at $500^{\circ}C$. The elongation of the alloys was limited in spite of high m values due to large dispersoids containing appreciable amount of Fe impurities.

  • PDF

Ferromagnetism and Anomalous Hall Effect of $TiO_2$-based superlattice films for Dilute Magnetic Semiconductor Applications

  • Jiang, Juan;Seong, Nak-Jin;Jo, Young-Hun;Jung, Myung-Hwa;Yang, Jun-Mo;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.41-41
    • /
    • 2007
  • For use in spintronic materials, dilute magnetic semiconductors (DMS) are under consideration as spin injectors for spintronic devices[l]. $TiO_2$-based DMS doped by a cobalt, iron, and manganese et al. was recently reported to show ferromagnetic properties, even at temperatures above 300K and the magnetic ordering was explained in terms of carrier-induced ferromagnetism, as observed for a III-V based DMS. An anomalous Hall effect (AHE) and co-occurance of superparamagnetism in reduced Co-doped rutile $TiO_{2-\delta}$ films have also been reported[2]. Metal segregation in the reduced metal-doped rutile $TiO_2-\delta$ films still remains as problems to solve the intrinsic DMS properties. Superlattice films have been proposed to get dilute magnetic semiconductor (DMS) with intrinsicroom-temperature ferromagnetism. For a $TiO_2$-based DMS superlattice structure, each layer was alternately doped by two different transition metals (Fe and Mn) and deposited to a thickness of approximately $2.7\;{\AA}$ on r-$Al_2O_3$(1102) substrates by pulsed laser deposition. The r-$Al_2O_3$(1102) substrates with atomic steps and terrace surface were obtained by thermal annealing. Samples of $Ti_{0.94}Fe_{0.06}O_2$(TiFeO), $Ti_{0.94}Mn_{0.06}O_2$(TiMnO), and $Ti_{0.94}(Fe_{0.03}Mn_{0.03})O_2$ show a low remanent magnetization and coercive field, as well as superparamagnetic features at room temperature. On the other hand, superlattice films (TiFeO/TiMnO) show a high remanent magnetization and coercive field. An anomalous Hall effect in superlattice films exhibits hysisteresis loops with coercivities corresponding to those in the ferromagnetic Hysteresis loops. The superlattice films composed of alternating layers of $Ti_{0.94}Fe_{0.06}O_2$ and $Ti_{0.94}Mn_{0.06}O_2$ exhibit intrinsic ferromagnetic properties for dilute magnetic semiconductor applications.

  • PDF

Effect of Stress Induced Phase Transformation on $Al_2 O_3$ Matrix Dispersed with $ZrO_2-Y_2O_3$ ($Y_2O_3-ZrO_2$$Al_2 O_3$ 매트릭스에 분산시 응력 유기 상변태의 효과)

  • Lee, Tae-Keun;Lim, Eung-Keuk;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.1
    • /
    • pp.11-18
    • /
    • 1985
  • The effect of stress induced phase transformation on $Al_2 O_3$ matrix dispersed with $ZrO_2-Y_2O_3$ has been studied. In order to determinate the mechanical properties three $Al_2O_3-ZrO_2$ composite series containing 1, 3 and 5 mole% $Y_2O_3$ were prepared. The starting materials were $Al_2O_3$ and $ZrO_2-Y_2O_3$ which was prepared from the aqueous solution of high purity $YCl_3$.$6H_2O$ and $ZrOCl_2$.$8H_2O$. Powder mixtures of $Al_2O_3-ZrO_2$ containing $Y_2O_3$ have been prepared by ball-milling with methanol and the samples were formed by isostatic press and sintered at 150$0^{\circ}C$ for 2hrs. After sintering. the specimens were polished for mechanical determination. The relative density of sintered specimens were also measured. It was found that the addition of 1, 3mole% to {{{{ { ZrO}_{2 } }} allowed full retention of the tetragonal phase in $Al_2O_3-ZrO_2$ but partially stabilized zirconia (PSZ) was produced by additions of 5 mole% $Y_2O_3$.The critical stress-intensity factor KIc of $A_2O_3-ZrO_2$ (containing 1 mole% $Y_2O_3$) composite materials increased with increasing $ZrO_2$ content, The maximum value of KIC=7Mn/$m^3$/2 at 20 mole% $ZrO_2$ exhibited about twice that of the $Al_2 O_3$ The modulus of rupture exhibited a trend similiar to KIC The maximum value of MOR was 580MN/m2. As the amount of Y2O3 increase it was observed that the maximum of KIC and MOR decreased : Additions of 3 mole% $Al_2O_3$ $Y_2O_3$ allowed the maximum of KIC 6MN/$m^3$/2 MOR 540MN/$m^2$ at 15 mole% $ZrO_2$ additions of 5 mole% $Y_2O_3$ allowed the maximum of KIC 5MN/$m^3$/2 MOR 410MN/$m^2$ at 10 mole% $ZrO_2$.

  • PDF

Removal Characteristics of Heavy Metals in Acid Mine Drainage (AMD) Using Porous Starfish Ceramics (II) - Treatment of AMD in a Column Reactor System (불가사리 소재 다공성 세라믹을 이용한 산성광산배수 내 중금속의 제거특성(II) - 컬럼연속 실험을 통한 산성광산배수의 처리특성)

  • Lee, Yonghwan;Yim, Soobin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.25-34
    • /
    • 2014
  • The objective of this study was to investigate the removal characteristics and the elimination mechanism of heavy metals in Acid Mine Drainage (AMD) using spherical-type porous Zeolite-StarFish ceramics (porous ZSF ceramics) packed in a continuous column reactor system. The average removal efficiencies of heavy metals in AMD were Al 98.7, As 98.7, Cd 96.0, Cu 89.1, Fe 99.5, Mn 94.4, Pb 96.3 and Zn 80.8 % during 110 days of operation time. The average removal capacity of porous ZSF ceramics for heavy metals were measured to be Al 21.76, As 1.52, Cd 1.27, Cu 3.41, Fe 44.83, Mn 3.48, Pb 2.36 and Zn $3.76mg/kg{\cdot}day$. The analysis results of mechanism using SEM, EDS and XRD exhibited that the porous ZSF ceramics could act as a multi-functional ceramics for the removal of heavy metals in AMD through the reactions of precipitation, adsorption and ion-exchange. The experimental results of column reactor system displayed that the porous ZSF ceramics would be a consistently efficient agent for the removal of heavy metals in AMD for a long term.

Geochemical Characteristics of Stream Sediments Based on Bed Rocks in the Naju Area, Korea (기반암에 따른 나주지역 하상퇴적물의 지구화학적 특성)

  • Park, Young-Seog;Kim, Jong-Kyun;Jung, Young-Hwa
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.49-60
    • /
    • 2006
  • The purpose of this study is to investigate geochemical characteristics for stream sediments in the Naju area. We collected 139 stream sediments samples from primary channels. Samples were dried slowly in the laboratory and chemical analysis was carried out using XRF. ICP-AES and NAA. In order to investigate geochemical characteristics, the geological groups categorized into granitic gneiss area, schist area, granite area, arenaceous rock area, tuff area, andesite area, and rhyolite area. Average contents of major elements for geological groups are $SiO_2\;58.37{\sim}66.06wt.%,\;Al_2O_3\;13.98{\sim}18.41wt.%,\;Fe_2O_3\;4.09{\sim}6.10wt.%,\;CaO\;0.54{\sim}1.33wt.%,\;MgO\;0.86{\sim}1.34wt.%,\;K_2O\;2.38{\sim}4.01wt.%,\;Na_2O\;0.90{\sim}1.32wt.%,\;TiO_2\;0.82{\sim}1.03wt.%,\;MnO\;0.09{\sim}0.15wt.%,\;P_2O_5\;0.11{\sim}0.18wt.%$. According to the comparison of average contents of major elements, $Al_2O_3\;and\;K_2O$ are higher in granitic gneiss area, $Fe_2O_3,\;CaO,\;P_2O_5$ are higher in tuff area, MgO and $TiO_2$ are higher in andesite area, $Na_2O_$ is higher in rhyolite area, $SiO_2$, and MnO are higher in arenaceous rock area. Average contents of minor and rare earth elements for geological groups are $Ba\;1278{\sim}1469ppm,\;Be\;1.1{\sim}1.5ppm,\;Cu\;18{\sim}25ppm,\;Nb\;25{\sim}37ppm,\;Ni\;16{\sim}25ppm,\;Pb\;21{\sim}28ppm,\;Sr\;83{\sim}155ppm,\;V\;64{\sim}98ppm,\;Zr\;83{\sim}146ppm,\;Li\;32{\sim}45ppm,\;Co\;7.2{\sim}12.7ppm,\;Cr\;37{\sim}76ppm,\;Cs\;4.8{\sim}9.1ppm,\;Hf\;7.5{\sim}25ppm,\;Rb\;88{\sim}178ppm,\;Sc\;7.7{\sim}12.6ppm,\;Zn\;83{\sim}143ppm,\;Pa\;11.3{\sim}37ppm,\;Ce\;69{\sim}206ppm,\;Eu\;1.1{\sim}1.5ppm,\;Yb\;1.8{\sim}4.4ppm$. According to the comparison of average contents of minor and rare earth elements for geological groups, Pb, Li, Cs, Hf, Rb, Sb, Pa, Ce, Eu, and Yb are higher in granitic gneiss area; Ba, Co, and Cr in schist area; Nb, Ni, and Zr in arenaceous rock area; Sr in tuff area: and Be, Cu, V, Sc, and Zn are such in andesite area.

Mobility of Metals in Tailings using a Column Experiment from the Guryong Copper Mine (주상모사실험을 이용한 구룡광산 광미 내 원소의 이동성)

  • Moon, Yong-Hee;Song, Yun-Goo;Moon, Hi-Soo;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.275-282
    • /
    • 2010
  • The laboratory column experiments were used to transport of metal elements by infiltration-related dispersion and/or diffusion in mine tailing of the Guryong gold mine. The mine tailing shows the neutral pH (for a pore water) and contains quartz, chlorite, pyrite and calcite. Both a non-reactive solute ($Cl^-$ of 100 mg $L^{-1}$) and a reactive solute (1N HCl), were injected continuously through columns. The breakthrough curve in the non-reactive experiment reached at a maximum under 1.5 pore volumes (PV). The longitudinal dispersion (0.607 cm) and hydrodynamic dispersion coefficient ($1.96{\times}10^{-7}cm^{2}sec^{-1}$) were calculated by the slope. In the reactive experiment, the plateau curve was appeared in the pH values of 5.3, 4.5 and 1.7. The releases of metal elements such as Fe, Mn, Al, Cu, Zn, Pb, and Cd were observed to be related to the pH buffering. High concentrations of Mn, Cd and Zn were observed at the first pH plateau (4 PV and pH 5.3), whereas Fe, Cu, Al and Pb were released as the pH decreased to 4.0 or less. The resulting order of metals mobility, based on the effluent water, is Mn=Cd>Zn>Cu>Fe>Al>Pb.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Properties of Crude Trehalase from Agaricus bisporus (양송이 중의 조(粗) Trehalase의 분리와 그 성질)

  • Lee, Seung-In;Kim, Byung-Mook
    • The Korean Journal of Mycology
    • /
    • v.14 no.3
    • /
    • pp.209-214
    • /
    • 1986
  • In order to study the trehalase (EC 3. 2. 1. 28) from mushroom, Agaricus bisporus Lange Sing., the crude trehalase preparation was separated by fractionation of mushroom extracts with ammonium sulfate between 0.4 and 1.0 saturation, and its properties were examined. Mushroom trehalase showed optimum pH 6.0, and optimum temperature $40^{\circ}C$. The enzyme was stable at pH range between 5.0 and 7.0, and at temperature below $50^{\circ}C$. The activities of crude trehalase had proportional relations with enzyme concentrations below 490.2 mg % of protein and with substrate concentration below $2.6{\times}10^{-3}M$, showing a Km value of 0.760 mM. The enzyme was inhibited by some metal ions such as $Sn^{2+}$, $Ca^{2+}$, $Hg^{2+}$, $Cd^{2+}$, $Cu^{2+}$, $Mn^{2+}$, $Zn^{2+}$, $Al^{3+}$, and $Fe^{3+}$, while $Ag^{+}$, $Ba^{2+}$, and $Mg^{2+}$ demonstrated remarkable increasing effects on the enzyme activity.

  • PDF

A Study on Metal Concentrations in the Air of Metal Products Manufacturing Industry (금속제품 제조 산업장내 공기중 금속농도에 관한 연구)

  • Kang, Yong Seon;Kim, Se Dong;Ku, Tae Hyeong;Yoon, Hyeong Ryeol;Moon, Deog Hwan;Han, Yong Soo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.249-264
    • /
    • 1996
  • This study was conducted for the purpose of obtaining the fundamental data on improvement of working environment and contributing to health improvement of workers who dealed with metal by assessing the metal concentration in air of industries located in Chang-Won Industrial Complex. Authors measured the concentration of metals(Al, Cd, Cr, Cu, Mn, Ni, Pb, Sn and Zn) is the air to 25 working processes of 73 industries by flame atomic absorption spectrometry from February to December 1994. Personal air sampler was used for air sampling with mixed cellulose-ester membrane filter. The results were as follows : 1. The geometric means(range) of metal concentration; 1) Al: $0.1505mg/m^3$ ($0.0147-18.6100mg/m^3$) 2) Cd: $0.0077mg/m^3$ ($0.0003-7.0710mg/m^3$) 3) Cr: $0.0163mg/m^3$ ($0.0013-1.1510mg/m^3$) 4) Cu: $0.0097mg/m^3$ ($0.0009-0.4950mg/m^3$) 5) Mn: $0.0412mg/m^3$ ($0.0006-4.7877mg/m^3$) 6) Ni: $0.0088mg/m^3$ ($0.0001-1.0170mg/m^3$) 7) Pb: $0.0152mg/m^3$ ($0.0015-0.4499mg/m^3$) 8) Sn: $0.0486mg/m^3$ ($0.0037-0.1500mg/m^3$) 9) Zn: $0.1911mg/m^3$ ($0.0122-8.2920mg/m^3$) 2. The geometric mean of lead exceeded TWA in assembling process of other general purpose machinery not elsewhere classified products manufacturing industries.

  • PDF