• Title/Summary/Keyword: Al-0.7Mn

Search Result 187, Processing Time 0.028 seconds

Microstructure, High Temperature Deformation Behavior and Hot Formability of Modified Al-0.7Mn alloy (개량 Al-0.7Mn 합금의 미세조직, 고온 변형 거동 및 성형성)

  • Kang, T.H.;Huang, Y.;Shin, Y.C.;Choi, H.J.;Roh, H.R.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.365-375
    • /
    • 2022
  • The microstructure and high-temperature plastic deformation behavior of the modified Al-0.7Mn alloy were investigated and compared with the conventional Al-0.3Mn (Al3102) alloy. α-Al (matrix) and Al6(Mn, Fe) phases were identified in both alloys. As a result of microstructure observation, both alloys showed equiaxed grains, and Al-0.7Mn alloy showed larger grain size and higher Al6(Mn, Fe) fraction than Al-0.3Mn alloy. High temperature compressive tests, the deformation temperatures of 410℃, 450℃, 490℃, 530℃ and strain rats of 10-2/s, 10-1/s, 1/s, 10/s, were conducted using Gleeble equipment. The flow stress values of Al-0.7Mn alloy were higher than that of Al-0.3Mn alloy at all strain rates and temperature conditions. Constitutive equations were presented using the flow stresses obtained from experimental results and the Zener-Hollomon parameter. In the true stress-true strain curves of the two alloys, the experimental and predicted values were in good agreement with each other. Based on the dynamic material model, eutectic deformation maps of Al-0.7Mn and Al-0.3Mn alloys were suggested, and the plastic instability region was presented. The modified Al-0.7Mn alloy showed a wider plastic instability region than that Al-0.3Mn alloy. Based on the process deformation maps, the MPE tube parts could be manufactured through the actual extrusion process using the suggested conditions.

Effect of Fe, Mn Content on the Castability in Al-9wt%Si-Mg System Alloys for High Elongation (고신율 금형주조용 Al-9wt%Si-Mg계 합금의 주조특성에 미치는 Fe, Mn함량의 영향)

  • Kim, Heon-Joo;Jeong, Chang-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.33 no.6
    • /
    • pp.233-241
    • /
    • 2013
  • Effect of Fe and Mn contents on the castability of Al-9wt%Si-xMg-yFe-zMn alloy has been studied. The alloy was composed of ${\alpha}$-Al phase, Al+eutectic Si phase, ${\beta}$-Al5FeSi compound and chinese script ${\alpha}$-$Al_{15}(Mn,Fe)_3Si_2$ compound. ${\beta}$-$Al_5FeSi$ and ${\alpha}$-$Al_{15}(Mn,Fe)_3Si_2$ compounds assumed to effect the fluidity and shrinkage behaviors of the alloy during solidification due to the crystallization of ${\alpha}$-$Al_{15}(Fe,Mn)_3Si_2$ and ${\beta}$-$Al_5FeSi$ compounds above eutectic temperature. As Fe and Mn contents of Al-9wt%Si-0.3wt%Mg system alloy increased from 0.15wt% to 0.6wt% and from 0.3wt% to 0.7wt%, fluidity of the alloy decreased by 5.7% and 3.3%, respectively. And as Mg content of Al-9wt%Si-0.45wt%Fe-0.5wt%Mn system alloy increased from 0.3wt% to 0.4wt%, fluidity of the alloy decreased by 8.6%. When Fe content of the alloy increased from 0.15wt% to 0.6wt%, macro shrinkage ratio decreased from 6.1% to 4.1%, and micro shrinkage ratio increased from 0.04% to 0.24%. Similarly, Mn content of the alloy increased from 0.3wt% to 0.7wt%, macro shrinkage ratio decreased from 6.0% to 4.5% and micro shrinkage ratio increased from 0.12% to 0.18%. Judging from the castability of the alloy, Al-9wt%Si-0.3wt%Mg alloy with low content of Fe and Mn, 0.1wt% Fe and 0.3wt% Mn, is recommendable.

Effects of Mn, Cr, and Sr Additions on the Microstructure and Tensile Properties of Al-7Si-0.4Mg-1Fe Casting Alloy (Al-7Si-0.4Mg-1Fe 주조합금의 미세조직과 인장성질에 미치는 Mn, Cr 및 Sr 첨가의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ha-Young;Cho, Jae-Ik;Jung, Chang-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2009
  • The microstructure of Al-7Si-0.4Mg-1Fe alloy mainly consists of aluminum dendrites, Al-Si eutectics, and $Al_5FeSi$ needles. When Mn was added to the alloy, the substantial amount of $Al_5FeSi$ phase was changed into Al(Mn,Fe)Si, however the needle-like morphology was almost unchanged. Combined additions of Cr or Sr with Mn to the base alloy resulted in rod-like Al(Mn, Fe,Si)Si phase. The tensile properties of as-cast alloys were enhanced by the Mn addition, especially when it was added with Sr. The tensile properties after T6 heat treatment was a little improved with 0.7%Mn addition, but Cr or Sr additions with Mn didn't show any positive effect on the properties of heat-treated alloys.

Effect of Fe, Mn Content on the Tensile Property of Al-4 wt%Mg-0.9 wt%Si Alloy System for High Pressure Die Casting (고압 금형 주조용 Al-4 wt%Mg-0.9 wt%Si계 합금의 인장특성에 미치는 Fe, Mn함량의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.33 no.3
    • /
    • pp.103-112
    • /
    • 2013
  • Effect of Fe and Mn contents on the tensile properties of Al-4 wt%Mg-0.9 wt%Si alloy system has been studied. Common phases of Al-4 wt%Mg-0.9 wt%Si alloy system were ${\alpha}$-Al, $Mg_2Si$, ${\alpha}-Al_{12}(Fe,Mn)_3Si$ and ${\beta}-Al_5FeSi$. As Fe content of Al-4 wt%Mg-0.9 wt%Si alloy system increased from 0.15 wt% to above 0.3 wt%, ${\beta}-Al_5FeSi$ compound appeared. When Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, morphology of plate shaped ${\beta}-Al_5FeSi$ compound changed to chinese script ${\alpha}-Al_{12}(Fe,Mn)_3Si$. As Fe content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Mn alloy increased from 0.15 wt% to 0.4 wt%, tensile strength of the as-cast alloy decreased from 191 MPa to 183 MPa and, elongation of the alloy also decreased from 8.0% to 6.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with low Mn/Fe ratio of the alloy. However, when Mn content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Fe alloy increased from 0.3 wt% to 0.5 wt%, tensile strength of as-cast alloy increased from 181 MPa to 194 MPa and, elongation of the alloy increased from 6.8% to 7.0%. These improvements attribute to the morphology change from ${\beta}-Al_5FeSi$ phase to chinese script, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ phase shape-modified from with high Mn/Fe ratio of the alloy.

Ferromagnetic Properties in Diluted Magnetic Semiconductors (Al,Mn)N grown by PEMBE

  • Ham, Moon-Ho;Myoung, Jae-Min
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.12-15
    • /
    • 2006
  • We present the structural, magnetic, and electrical properties in the (Al,Mn)N films with various Mn concentrations grown by plasma-enhanced molecular beam epitaxy. X-ray diffraction analyses reveal that the (Al,Mn)N films have the wurtzite structure without secondary phases. All (Al,Mn)N films showed the ferromagnetic ordering. Particularly, ($Al_{1-x}Mn_{x}$)N film with x = 0.028 exhibited the highest magnetic moment per Mn atom at room temperature. Since all the films exhibit the insulating characteristics, the origin of ferromagnetism in (Al,Mn)N might be attributed to either indirect exchange interaction caused by virtual electron excitations from Mn acceptor level to the valence band within the samples or a percolation of bound magnetic polarons arisen from exchange interaction of localized carriers with magnetic impurities in a low carrier density regime.

Precursor Process Designing to Synthesize Nano-sized Phosphors

  • Kim, Soo-Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.26-29
    • /
    • 2006
  • We present the structural, magnetic, and electrical properties in the (Al,Mn)N films with various Mn concentrations grown by plasma-enhanced molecular beam epitaxy. X-ray diffraction analyses reveal that the (Al,Mn)N films have the wurtzite structure without secondary phases. All (Al,Mn)N films showed the ferromagnetic ordering. Particularly, ($Al_{1-x}Mn_{x}$)N film with x = 0.028 exhibited the highest magnetic moment per Mn atom at room temperature. Since all the films exhibit the insulating characteristics, the origin of ferromagnetism in (Al,Mn)N might be attributed to either indirect exchange interaction caused by virtual electron excitations from Mn acceptor level to the valence band within the samples or a percolation of bound magnetic polarons arisen from exchange interaction of localized carriers with magnetic impurities in a low carrier density regime.

Crystal structures and magnetic properties of Mn-Al-M (M=Cu, Fe) alloys (Mn-Al-M(M=Cu, Fe) 합금계의 결정구조 및 자기적 성질)

  • Choe, Won-Gyu;Go, Gwan-Yeong;Yun, Seok-Gil
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.22-35
    • /
    • 1995
  • In this study, crystal structures and magnetic properties of as-ast, annealed and rapidly solidified Mn-A1-M( M=Cu, Fe) alloys have been investigated. In $Mn_{0.56}Al_{0.44}$ alloys, the largest fraction of $\tau$ phase and values of magnetic properties was obtained in Mnl, i6Alo or alloy. And this alloy was used as the basic composition. In $Mn_{0.56-X}M_{X}Al_{0.44}$ alloys, when annealed, $\tau$- and $\beta$-Mn phase appeared at x< 0.08, $\tau$- and $\kappa$ phase at 0.10 $\leq x \leq$ 0.12 and $\kappa$- phase only at 0.15 $\leq x \leq$0.20 . When rapidly solidified, specimens showed similar phases as when annealed except that $\varepsilon$ phase appeared at x=0.04. In Mnu FexAlo 44 alloys, asyast specimens showed $\tau$-, $\beta$-Mn and $\gamma_2$- phase at x<0.08 and K and $\beta$-Mn phase at x>0.10. When rapidly solidified, Mn-Fe-Al specimens showed $\varepsilon$-, $\gamma_2$- and small amount of $\tau$- and $\kappa$ phase at x<0.08 and $\kappa$- phase only at 0.$\leq x \leq$0.20. All the alloys investigated were ferromagnetic. The Curie temperature of annealed specimens and rapidly solidified of Mno 5sAlu 44 alloy were -650K and -644K. Spontaneous magnetization( UII of annealed and rapidly solidified specimens were 40-45 (emu/g) and 50-52(emu/g), respectively. Remanent (M,) to saturation magnetization( Ms) ratio was -0.7. M, of rapidly solidified specimen was about 48(emu/g). Magnetic properties of $Mn_{0.56}Al_{0.44}$ alloys were found to be determined by the relative fraction of ferromagnetic r- and K- phase. When M= Cu and x=0.15, maximum as($\sigma_{0.0}$) was obtained by about 64.3 emu/g), and when M=Fe and x=0.15, 66.4( emu/g). The Curie temperature decreased as x increased.

  • PDF

The Effect of Mn Content Solution-treatment Temperatures on Insoluble Phases in Al-Li-Cu-Mg-Mn-Zr Alloys (Al-Li-Cu-Mg-Zr 합금의 미고용상에 미치는 용체화 처리 및 Mn 함량의 영향)

  • Shin, Hyun-Sik;Ming, He;Cho, Kwon-Koo;Chung, Young-Hoon;Shin, Myung-Chul
    • Analytical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.517-526
    • /
    • 1994
  • Large insoluble phases and dispersoids in Al-Li-Cu-Mg-Mn-Zr alloys containing Mn were analyzed with EPMA(Electron Probe Microanalyzer) and SAEM(Scanning Auger Electron Microscope). Morphology, distribution and volume fraction of the large insoluble phase were also analyzed quantitatively by optical microscopy. Mechanical properties were tested at room temperature and at $200^{\circ}C$. With increasing Mn contents, the volume fraction of the large insoluble phases increased steeply, thus decreasing ductility. Mn was found to be very effective for obtaing uniformly distributed fine-grain structures. The alloy containing 0.44 wt% Mn showed the highest tensile strength among Mn-bearing alloys tested.

  • PDF

Sintering and the Optical Properties of Mn3O4-added Al2O3 (Mn3O4를 첨가한 Al2O3 세라믹스의 소결 및 광학 특성)

  • Kim, Jin-Ho;Baik, Seung-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.539-545
    • /
    • 2016
  • Alumina added with Mn3O4 up to 7.5 cat% of Mn was prepared by conventional ceramic processing, and the sintering behavior and the optical properties of which were studied as functions of Mn content. Densification and grain growth of alumina were enhanced by Mn addition up to 0.75 cat% but was leveled off at higher concentrations. XRD revealed that $Al_2MnO_4$(galaxite) was formed as a second phase in the specimens with more than 0.75 cat% of Mn. Thus it is believed that either the solid solution effect of Mn or the Zener effect of $Al_2MnO_4$ becomes predominant in the sintering of Mn-added $Al_2O_3$ according to the additive concentration. UV-VIS reflectivity(SCI) spectra of Mn-added $Al_2O_3$ consisted of smooth bottoms in 300~550 nm wavelength range and plateaus at wavelengths longer than 650 nm. The reflectivity spectrum continuously moved downward, and the specimen color became darker and thicker with increasing Mn content. The CIELAB color change with respect to standard white was also dependent on the amount of Mn added: ${\Delta}L^*$(D65) negatively increased and ${\Delta}E_{ab}^*$(D65) positively increased with increasing Mn content, probably due to Mn substitution to Al and/or the mixing effect of black $Al_2MnO_4$ as a second phase.

Effect of Sn Addition on the Fatigue Properties of Al-Cu-Mn Cast Alloy (Al-Cu-Mu 주조합금의 피로성질에 미치는 Sn 첨가의 영향)

  • Kim, Kyung-Hyun;Kim, Jeung-Dae;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.248-253
    • /
    • 2002
  • Effect of Sn addition on the fatigue properties of Al-Cu-Mn cast alloy was investigated by low and high cycle fatigue tests. Fatigue life showed the maximum value of 5450cycles in the Al-Cu-Mn alloy containing 0.10%Sn, but decreased rapidly beyond 0.20% of Sn additions. It was found that the fatigue strength was 132MPa and fatigue ratio was 0.31 in the alloy containing 0.10%Sn. Metallographic observation revealed that the fatigue crack initiated at the surface and propagated along the grain boundary. This propagation path was attributed to the presence of PFZ along the grain boundary. The tensile strength increased from 330MPa in 7he Sn-free Al-Cu-Mn cast alloy to 429MPa in the alloy containing 0.10%Sn. But above 0.20%Sn additions, tensile strength was decreased by the segregation of Sn.