• Title/Summary/Keyword: Al welding

Search Result 633, Processing Time 0.025 seconds

Ultrasonic Deposit Junction Characteristic Evaluation of Metal Sheets Al/Al and Al/Cu (금속 박판 Al/Al 및 Al/Cu의 초음파 용착 접합성 평가)

  • Seo, Jeong-Seok;Beck, Si Young
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.642-648
    • /
    • 2011
  • This paper describes an experimental study on ultrasonic welding of similar and dissimilar metals. There are optimum welding conditions which are found for welding of Al/Al and Al/Cu. It evaluated weldability using tensile test, SEM observation and EDX-ray analysis. Both ultrasonic welding of Al/Al and Al/Cu have amplitude as the variable factor. Al/Cu welding was examined again with welding time as variable factor to find the best conditions. The more welding time or amplitude increase, the better weldability. The optimum conditions for ultrasonic welding of Al/Al were formed at pressure 0.25 MPa, welding time 0.25 sec, amplitude 90%. Pressure 0.25 MPa, welding time 0.4 sec, amplitude 80% are optimized for Al/Cu ultrasonic metal welding and solid-state diffusion generated by ultrasonic vibration and frictional heat is confirmed at the welded interface.

Microstructural behavior on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser

  • Lee, Su-Jin;Kawahito, Yousuke;Kim, Jong-Do;Katayama, Seiji
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.711-717
    • /
    • 2013
  • Titanium (Ti) metal and its alloys are desirable materials for ship hulls and other structures because of their high strength, light weight and corrosion-resistance. And light weight and corrosion-resistant aluminum (Al) is the ideal metal for shipbuilding. The joining of Ti and Al dissimilar metals is one of the effective measures to reduce weight of the structures or to save rare metals. Ti and Al have great differences in materials properties, and intermetallic compounds such as Ti3Al, TiAl, TiAl3 are easily formed at the contacting surface between Ti and Al. Thus, welding or joining of Ti and Al is considered to be extremely difficult. However, it was clarified that ultra-high speed welding could suppress the formation of intermetallic compounds in the previous study. Results of tensile shear strength increases with an increase in the welding speed, and therefore extremely high welding speed (50m/min in this study) is good to dissimilar weldability for Ti and Al. In this study, therefore, full penetration dissimilar lap welding of Ti (upper) - Al (lower) and Al (upper) - Ti (lower) with single-mode fiber laser was tried at ultra-high welding speed, and the microstructure of the interface zones in the dissimilar Al and Ti weld beads was investigated.

Microstructural behavior on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser

  • Lee, Su-Jin;Katayama, Seiji;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.133-139
    • /
    • 2014
  • Titanium (Ti) metal and its alloys are desirable materials for ship hulls and other ocean structures because of their high strength, corrosion-resistance and light weight properties. And light weight and corrosion-resistant aluminum (Al) is the ideal metal for shipbuilding. The joining of Ti and Al dissimilar metals is one of the effective methode to reduce weight of the structures. Ti and Al have great differences in materials properties, and intermetallic compounds such as $Ti_3Al$, TiAl, $TiAl_3$ are easily formed at the contacting surface between Ti and Al. Thus, dissimilar welding and joining of Ti and Al are considered to be very difficult. However, it was clarified that ultra-high speed welding could suppress the formation of intermetallic compounds in the previous study. Results of tensile shear strength increases with an increase in the welding speed, and therefore extremely high welding speed (50 m/min) is good to dissimilar weldability for Ti and Al. In this study, therefore, full penetration dissimilar lap welding of Ti (upper) - Al (lower) and Al (upper) - Ti (lower) with single-mode fiber laser was tried at ultra-high welding speed, and the microstructure of the interface zones in the dissimilar Al and Ti weld beads was investigated.

Failure analyses of friction welded Al/Cu joints (Al/Cu 마찰용접부의 파단분석)

  • 박재현;권영각;장래웅
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.80-93
    • /
    • 1994
  • The microstructure and fractography of the friction welded joint of Al to Cu have been investigated in order to understand the formation of intermetallic compounds and their effects on the failure in tensile test of the joint. The variation of welding pressure did not affect significantly the tensile strength of joint. However, the tensile strength of joint decreaed as welding time increased. The thickness of reaction layers of welded joints was several micro-meters and mainly composed of intermetallic compounds of $CuAl_2$, $Cu_9Al_4$ and Al+$CuAl_2$. The thickness of $CuAl_2$, $Cu_9Al_4$ was increased with welding time. However, $CuAl_2$ was gradually changed to $Cu_9Al_4$ which caused the decrease of tensile strength . Even though the morphology of fractured surfaces depended upon the welding time, the failure occurred along $CuAl_2$ intermetallic compound itself or between $CuAl_2$ and $Cu_9Al_4$ in most cases.

  • PDF

[Retracted] The Effect of Welding Conditions on Tensile Characteristics and Thermal Stress of Al 5083 Alloy Applied to Co-environmental Leisure Ships ([논문 철회] 친환경 레져선박에 적용되는 Al 5083 합금의 인장특성 및 열응력에 미치는 용접조건의 영향)

  • Moon, Byung Young;Lee, Ki Yeol;Kim, Kyu Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.548-555
    • /
    • 2014
  • As a considerable, experimental approach, an Auto-carriage type of $CO_2$ welding machine and a MIG(Metal Inert Gas) welding robot under inert gas atmosphere were utilized in order to realize Al 5083 welding applied to hull and relevant components of green Al leisure ships. This study aims at investigating the effect of welding conditions(current, voltage, welding speed, etc) on thermal deformation that occurs as welding operation and tensile characteristics after welding, by using Al 5083, non-ferrous material, applied to manufacturing of co-environmental Al leisure ships. With respect to welding condition to minimize the thermal deformation, 150A and 16V at the wire-feed rate of 6mm/sec were acquired in the process of welding Al 5083 through an auto carriage type of $CO_2$ welding feeder. As to tensile characteristics of Al 5083 welding through a MIG welding robot, most of tensile specimens showed the fracture behavior on HAZ(Heat Affected Zone) located at the area joined with weld metal, except for some cases. Especially, for the case of the Al specimen with 5mm thickness, 284.62MPa of tensile strength and 11.41% of elongation were obtained as an actual allowable tensile stress-strain value. Mostly, after acquiring the optimum welding condition, the relevant welding data and technical requirements might be provided for actual welding operation site and welding procedure specification(WPS).

Process Evaluation of Plasma-GMA Welding for Al 5052 and 6061 Alloy (Al 5052, 6061합금에 대한 플라즈마-GMA 용접공정특성 평가)

  • Kim, Cheol-Hee;Ahn, Young-Nam;Choi, Jin-Kang;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.58-62
    • /
    • 2010
  • In this study, the bead-on-plate welding were conducted by using GMA welding and plasma-GMA welding on Al 5052 and, Al 6061 plates. For these processes, the maximum welding speeds for full penetration were compared, and various weld qualities such as bead appearance, cross-section, cracks and porosities were examined. Faster welding speed, cleaner bead surface and more stable drop transfer could be achieved by plasma-GMA welding, compared with GMA welding.

A study on the pure Al weldability using a pulsed Nd : YAG laser (펄스형 Nd:YAG 레이저를 이용한 Al의 용접 특성연구)

  • 김덕현
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.52-61
    • /
    • 1993
  • Laser welding of ASTM no. 1060 Al plate with a pulsed Nd: YAG laser of 200W average power was performed for end capping of KMRR nuclear fuel elements In this research, we performed basic welding experiments. Firstly, laser output parameters which affect laser welding parameters were studied by changing laser input parameters for effective welding of 1060 Al plates. We found that laser power density and pulse energy are important parameters for smooth bead shape. Secondly, welding parameters which affect weld width-to-depth ratio were studied by changing power density and pulse energy, shielding gas, and defocusing. We found that power density must be higher than 0.3 Mw/cm$^{2}$ pulse energy must be higer than 3 J. travel speed must not exceed 200mm/sec, laser focus must be existed beneath 2-3mm from plate surface and helium is proper shielding gas. Thirdly, we studied the weld defects of Al-1060 such as crack and porosity in lap-joint welding. We designed new welding geometry for crack free welding of Al-1060 plates, and obtained crack free weldment but with lack of fusion. However, with Ti, Zr grain refiner elements, we can weld Al plates without solidification hot crack. Finally, we studied the origin of porosity by changing shielding gas. And we found that porosity was resulted from entrapment of shielding gas by the collapsing keyhole.

  • PDF

A study on the welding conditions that affect thermal deformation and mechanical property of Al 5083 non-ferrous alloy for eco-environmental leisure ships

  • Moon, Byung Young;Kim, Kyu Sun;Lee, Ki Yeol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1190-1199
    • /
    • 2014
  • As a considerable, experimental approach, an autocarriage type of $CO_2$ welding machine and a MIG(metal inert gas) welding robot in the inert gas atmosphere were utilized in order to realize Al 5083 welding to hull and relevant components of green leisure ships. This study aims at investigating the effect of welding conditions(current, voltage, welding speed, etc.) on thermal deformation that occurs as welding operation and tensile characteristics after welding, by using Al 5083, nonferrous material, applied to manufacturing of eco-environmental leisure ships. With respect to welding condition to minimize the thermal deformation, 150 A and 16 V at the wire-feed rate of 6 mm/sec were acquired in the process of welding Al 5083 through an auto carriage type of $CO_2$ welding feeder. As to tensile characteristics of Al 5083 welding through a MIG welding robot, most of tensile specimens showed the fracture behavior on HAZ(heat affected zone) located at the area joined with weld metal, except for some cases. Especially, for the case of the Al specimen with 5 mm thickness, 284.62 MPa of tensile strength and 11.41 % of elongation were obtained as an actual allowable tensile stress-strain value. Mostly, after acquiring the optimum welding condition, the relevant welding data and technical requirements might be provided for actual welding operation site and welding procedure specification (WPS).

A study on friction welding of 2024 aluminium (2024 알루미늄의 마찰용접에 관한 연구)

  • 송오성;강춘식
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.24-30
    • /
    • 1990
  • 2024 Aluminium was welded by domestic manufactured continuous type friction welder. The problems and optimum condition were studied in 2024 Al-2024 Al cases. Mechanical tests and microstructure analysis were studeid. Interfacial temperature of welding was predicted by FDM. The obtained results are as follows: 1) In case of Al-Al, the optimum condition range was wide. 2) At the boundary zone, fine recrystallized zone was not harmful to the mechanical property and no growth of precipitation was observed. 3) In case of Al-Al, temperature gradient can be predictedby FDM and heat input can be taken as weld parameter.

  • PDF

Evaluation of Friction Spot Joining Weldability of Al Alloys for Automotive (마찰교반 점용접(FSJ)을 이용한 자동차용 Al 합금의 접합성 평가)

  • Cho, Hyeon-Jin;Kim, Heung-Ju;Cheon, Chang-Keun;Chang, Woong-Seong;Bang, Kook-Soo
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.50-55
    • /
    • 2006
  • In an attempt to optimize friction spot joining process of Al alloys for automobiles, effects of joining parameters such as tool rotating speed, plunging depth, and joining time on the joints properties were investigated. A wide range of joining conditions could be applied to join Al alloys for automobile without defects in the weld zone except for certain welding conditions with a lower heat input. For sound joints without defects, tensile shear strength of joints was higher than acceptable criteria of tensile shear strength of resistance spot welded joints for aluminum.