• Title/Summary/Keyword: Al tube

Search Result 340, Processing Time 0.022 seconds

EXPERIMENTAL INVESTIGATION OF FRETTING BEHAVIOR OF TiAlN COATED NUCLEAR FUEL ROD CLADDING MATERIALS

  • Kim, T.H.;Kim, S.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.185-186
    • /
    • 2002
  • Fretting of fuel rod cladding material, Zircaloy-4 tube, in PWR nuclear power plants must be reduced and avoided. Nowadays the introduction of surface treatments or coatings is expected to be an ideal solution to fretting damage since fretting is closely related to wear. corrosion and fatigue. Therefore. in this study the fretting wear experiment was performed using TiAlN coated Zircaloy-4 tube as the fuel rod cladding and uncoated Zircaloy-4 as on of grids, especially concentrating on the sliding component. Fretting wear resistance of TiAlN coated Zircaloy-4 tubes was improved compared with that of TiN coated tubes and uncoated tubes and fretting wear mechanisms were brittle fracture and plastic flow at lower slip amplitude but severe oxidation and spallation of oxidative layer at higher ship amplitude.

  • PDF

The Thinning Phenomena of the Wall Thickness during $360^{\circ}$ Cold Bending of Ti-6Al-4V Large-Diameter Seamless Tube (대 직경 이음매 없는 Ti-6Al-4V 합금 튜브의 $360^{\circ}$ 냉간 굽힘 시 벽두께 감소현상)

  • 허선무;박종승
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.231-236
    • /
    • 2000
  • The wall thickness of the Ti-6Al-4V Large-Diameter Seamless Tube, which is supposed to be a very important parameter in a system design, was measured during $360^{\circ}$ cold bending processes. The factors or processes affecting the wall thickness include 1) primary bending, 2)secondary or finishing step of the $360^{\circ}$ bending, 3)cleaning processes in CERO TRUTM(CT)process. But thinning effects of the wall thickness during the cleaning processes are negligible compared to those during the formers. The variations in the percentages of the change in wall thickness were found to be from -14% to +16%.

  • PDF

Study on Al Hot Forming using Air Bulging (Air Bulging을 이용한 열간 알루미늄 성형에 관한 연구)

  • Park, D.H.;Kang, S.S.;Kim, B.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.145-147
    • /
    • 2009
  • The benefits of hydroforming technology are known as weight and cost savings through part consolidation and reduced post-forming processes such as welding and piercing. Hydroforming technology has some weaknesses in terms of process cycle times. But, as the hydraulic system and process designs are continuously developed, the cycle time is also reduced to acceptable and competitive levels. Hot air bulging is one of recently developed hydroforming techniques. Hot air bulging in order to further extend the forming degrees of Al lightweight material is investigated. A heated tube is placed in a heated die and sealed at the ends by sealing cylinders. The tube is subsequently expanded against the die cavity wall by internal pressure provided by air medium. The result of this study shows that axial feeding speed and air pressure have an effect on formability of Al air bulging at elevated temperature.

  • PDF

Analysis of Bonding Characteristics of a T-shape Structure Fabricated by Superplastic Hydroforming and Diffusion Bonding using two Ti-3Al-2.5V tubes (Ti-3Al-2.5V 튜브의 초소성 하이드로포밍과 확산접합으로 제조된 T형 구조물의 접합 특성 분석)

  • Yoo, Y.H.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.2
    • /
    • pp.49-55
    • /
    • 2018
  • A T-shape structure was manufactured by the superplastic forming and diffusion bonding process using two Ti-3Al-2.5V alloy tubes. A Ti-3Al-2.5V tube was prepared for the hydroforming in the superplastic condition until it reaches a surface area such as a roof welded in the hole of another Ti-3Al-2.5V tube. Afterward, the superplastic forming process and the diffusion bonding process were carried out simultaneously until the appropriate bonding along the interface area of two Ti-3Al-2.5V tubes was obtained. The bonding qualities were different at each location of the entire interface according to the applied process conditions such as strain, pressure, temperature, holding time, geometries, etc. The microstructures of bonding interface have been observed to understand the characteristics of the applied processes in this study.

A Study on the Evaluation Method for Bending Collapse Behavior of an Aluminum Square Tube (굽힘붕괴를 수반하는 알루미늄 사각관의 시험법에 관한 연구)

  • 이성혁;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.123-126
    • /
    • 2002
  • To evaluate the bending collapse behavior of an aluminum square tube, a finite element simulation for the four-point bending test was suggested. Local buckling deformation near the center of an aluminum tube specimen was induced which has been partly inserted by two steel bars. Simulation results showed good agreements with those of experiment.

  • PDF

Bending Performance Evaluation of Aluminum-Composite Hybrid Square Tube Beams (알루미늄-복합재료 혼성 사각관 보의 굽힘 성능평가)

  • Lee, Sung-Hyuk;Choi, Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.76-79
    • /
    • 2005
  • Bending deformation and energy absorption characteristics of aluminum-composite hybrid tube beams have been analyzed for improvement in the bending performance of aluminum space frame by using experimental tests combined with theoretical and finite element analyses. Hybrid tube beams composed of glass fabric/epoxy layer wrapped around on aluminum tube were made in autoclave with the recommended curing cycle. Basic properties of aluminum material used for initial input data of the finite element simulation and theoretical analysis were obtained from the true stress-true strain curve of specimen which had bean extracted from the Al tube beam. A modified theoretical model was developed to predict the resistance to the collapse of hybrid tube beams subjected to a bending load. Theoretical moment-rotation angle curves of hybrid tube beams were in good agreement with experimental ones, which was comparable to the results obtained from finite element simulation. Hybrid tube beams strengthened by composite layer on the whole web and flange showed an excellent bending strength and energy absorption capability.

  • PDF

Development of Nursing Practice Guidelines on Enteral Tube Feeding using the Guideline Adaptation Process (간호분야 실무지침의 수용개작 방법론에 따른 경장영양 실무지침의 개발)

  • Cho, Yong Ae;Eun, Young;Gu, Mee Ock;Cho, Myung Sook;Park, Myung Wha;Kim, Kyung Sook;Kim, Jeong Yeun
    • Journal of Korean Clinical Nursing Research
    • /
    • v.20 no.2
    • /
    • pp.147-161
    • /
    • 2014
  • Purpose: This study was aimed to modify and adapt the previously developed, high-quality enteral tube feeding guidelines for the usage in clinical settings in Korea. Methods: Guideline adaptation process was undertaken according to the guideline adaptation manual version 2.0 developed by NECA (Kim, et al., 2011) and the standardized methodology for nursing practice guideline adaptation (Gu, et al. 2012). Results: The modified and adapted enteral tube feeding guidelines were consisted of 11 domains and 95 recommendations. The domains and numbers of recommendations in each domain were: 4 on general issues, 2 on enteral nutrition indication and discontinue, 6 on enteral nutrition device selection, 12 on enteral tube feeding device insertions, 3 on enteral nutrition formular and choices, 16 on enteral tube feeding start and progress, 20 on enteral tube feeding maintenance and management, 15 on monitoring enteral tube feeding administration, 10 on prevention of error, 5 on medication administration, and 2 on documentation and report. There were 16.1% of the recommendations marked as A grade, 17.8% of B grade, and 66.1% of C grade. Conclusion: The adapted enteral tube feeding nursing practice guideline is to be added to the evidence-based practice guidelines for fundamentals of nursing practice. The guideline is hoped to be disseminated to nurses nationwide in order to improve the efficiency of enteral tube feeding practice.

A Study on Design and Dynamic Characteristics of Tearing Tubes Applied in Tram (트램용 테어링 튜브 에너지흡수부재 설계와 동적 특성 연구)

  • Choi, Jiwon;Kwon, Taesoo;Jung, Hyunseung;Kim, Jinsung;Kwak, Jaeho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.524-536
    • /
    • 2015
  • The paper aims to design and verify tearing tube type energy absorption device applied in tram to ensure safety in case of collision accident. Energy capacity of tearing tube is determinated based on EN15227 and Standard Collision Scenarios Criterion in Detail in Republic of Korea. Tearing tube is designed based on theoretical model suggested by X.Huang et al. and assumption by T.Y. Reddy et al. Real scale collision tests are conducted to analyze the energy absorption characteristics and deformation mode. Bending of curl tips is absorbed collision energy when curl tips and tube body are contacted to each other from the tests and we suggest and include the formula on bending of curl tips in theoretical model.