• Title/Summary/Keyword: Al powder

Search Result 1,764, Processing Time 0.027 seconds

Mechanical Properties of Al/Al2O3 Composite Fabricated by a Powder-in Sheath Rolling Method (분말시스압연법에 의해 제조된 Al/Al2O3 복합재료의 기계적 성질)

  • 이성희;이충효
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.97-102
    • /
    • 2003
  • The powder-in sheath rolling was applied to the fabrication of $Al/Al_2O_3$ composite. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1 mm was used as a sheath. Mixture of aluminum powder and $Al/Al_2O_3$ particles of which volume content was varied from 5 to 20 vol.% was filled in the tube by tap filling and then rolled to 75% reduction at ambient temperature. The re]]ed specimen was sintered at 56$0^{\circ}C$ for 0.5 hr. The $Al/Al_2O_3$ composite fabricated by the sheath rolling and subsequent sintering showed the relative density higher than 0.96. The tensile strength of the composite increased with the volume content of $Al_2O_3$ particles, and it reached a maximum of 90 MPa which is 1.5 times higher than unreinforced material. The elongation decreased with the volume content of $Al_2O_3$ particles. It is concluded that the powder-in sheath rolling is an effective method for fabrication of $Al/Al_2O_3$ composite.

Making Alumina Microcomponents from Al Powder

  • Kim, J.S.;Jiang, K.;Falticeanu, L.;Daviesd, G.J.;Chang, I.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.864-865
    • /
    • 2006
  • Alumina microcomponents have distinguishing advantages over Si counterpart. However, the shrinkage of alumina, as high as 20%, makes it difficult to produce precision components meeting a high tolerance. A new fabrication process presented to greatly reduce the shrinkage by producing alumina microcomponents from ultrafine Al powder. The process consists of forming Al powder components through sintering and turning the Al powder component into alumina. In this way, the shrinkage occurring in sintering the Al powder component will be compensated by the expansion appearing when the Al powder component turns into alumina. The process has proven successful.

  • PDF

Attrition Milling and Reaction-Sintering of the Oxide-Metal Mixed Powders: I. Milling Behavior as the Powder Characteristics (산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: I. 분말의 특성에 따른 분쇄 거동)

  • 황규홍;박정환;윤태경
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.337-345
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics having low firing shrinkage were prepared from the Al/Al2O3 or Al/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And in this milling process the effect of the characteristics of used powders was investigated. Attrition milling was much more effective in reducing the particle size of ceramic/metal mixed powders than ball milling. Powder mixtures of flake-type Al with coarse alumina was much more effectively comminuted by the attrition milling than the mixtures of globular-type Al with coarse alumina powders. And coarse alumina than fine alumina was much more beneficial in cutting and reducing the ductile Al particles. In the contrary to Al/Al2O3 powder mixtures, Al/ZrO2 powder mixtures was not effectively comminutd. But whether using the alumina ball media or attrition milled with Al2O3 powder rather than Al, the milling efficiency was much more increased.

  • PDF

Fabrication of AlN Powder by Self-propagating High-temperature Synthesis I. Synthesis of AlN Powder (자전고온 반응 합성법에 의한 AlN 분말의 제조 I.AlN 분말의 제조)

  • 신재선;안도환;김석윤;김용석
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.961-968
    • /
    • 1996
  • The aluminum nitride was synthesized by the self-propagating high-temperature synthesis(SHS). The synthe-sis was used aluminum powder mixed with AlN powder as reactant and the control factors affected to synthesis were considered compact density pressure of reaction gas AlN diluent content and aluminum powder size. The SHS reaction conducted with a reactant containing 50% AlN diluent under 0.8MPa nitrogen gas pressure yielded a complete conversion of aluminum powder to AlN powders. The size and purity of AlN produced were found to be comparable with that of AlN produced by the carbothermal nitrogen method.

  • PDF

Accumulative Roll-Bonding of Al Powder Compact Fabricated by a Powder-in Sheath Rolling Method (분말피복압연법에 의해 제조된 Al 분말성형체의 반복겹침접합압연)

  • Lee, Seong-Hee
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.30-35
    • /
    • 2005
  • An aluminum powder compact consolidated by a powder-in sheath rolling (PSR) method was severely deformed by accumulative roll-bonding (ARB) process. The ARB process was performed up to 8 cycles at ambient temperature without lubrication. Optical microscope and transmission electron microscope observations revealed that microstructure of the ARB-processed Al powder compact is inhomogeneous in the thickness direction. The ultra-fine subgrains often reported in the ARB-processed bulky materials were also developed near surface of the Al powder compacts in this study. Tensile strength of the ARB-processed Al powder compact increased at the 1st cycle, but from the 2nd cycle it rather decreased slightly.

Properties of Castable REfractories Containing Metallic Al Powder (금속 Al분말 첨가 Castable 내화물의 특성)

  • 김효준;김인술;이상완
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.877-882
    • /
    • 1990
  • Effects of metallic Al powder addition on basic and thermal properties of castable refractories were investigated. Generally, low grade prooperties were obtained by metallic Al powder addition with the increase of temperature, comparing with those of non-addition of Al powder. Especially, Al addtion showed severe shrinkage, corrosiion and low strength above 1000$^{\circ}C$. As a result of Al addition, lower strength of and higher corrosion resistance were shown for 2% addition, but it was reversed for above 4% addition. It was found that Al addition was excellent in the explosive spalling test regardless of Al quantity.

  • PDF

Effect of Mn Addition on Sintering Properties of Ti-10wt.%Al-xMn Powder Alloy (Ti-10wt.%Al-xMn 분말합금의 Mn첨가에 따른 소결특성 평가)

  • Shin, Gi-Seung;Hyun, Yong-Taek;Park, Nho-Kwang;Park, Yong-Ho;Lee, Dong-Geun
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.235-241
    • /
    • 2017
  • Titanium alloys have high specific strength, excellent corrosion and wear resistance, as well as high heat-resistant strength compared to conventional steel materials. As intermetallic compounds based on Ti, TiAl alloys are becoming increasingly popular in the aerospace field because these alloys have low density and high creep properties. In spite of those advantages, the low ductility at room temperature and difficult machining performance of TiAl and $Ti_3Al$ materials has limited their potential applications. Titanium powder can be used in such cases for weight and cost reduction. Herein, pre-forms of Ti-Al-xMn powder alloys are fabricated by compression forming. In this process, Ti powder is added to Al and Mn powders and compressed, and the resulting mixture is subjected to various sintering temperature and holding times. The density of the powder-sintered specimens is measured and evaluated by correlation with phase formation, Mn addition, Kirkendall void, etc. Strong Al-Mn reactions can restrain Kirkendall void formation in Ti-Al-xMn powder alloys and result in increased density of the powder alloys. The effect of Al-Mn reactions and microstructural changes as well as Mn addition on the high-temperature compression properties are also analyzed for the Ti-Al-xMn powder alloys.

Fabrication of Rapidly Solidified Al-20wt%Si-5wt%Fe Alloy Powder and Mechanical Properties of its Extrudates (급속응고 Al-20wt%Si-5wt%Fe 합금분말 압출재의 강도에 관한 연구)

  • 김택수
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.66-71
    • /
    • 1994
  • Optical microstructures and mechanical properties of Na gas atomized Al-20Si-5Fe alloying powder and its hot extrudates were studied on 3 different types of powder size distribution. This powder showed the size distribution of 10~210 $\mu\textrm{m}$. Also the microstructures of $\alpha$-Al, primary and eutectic Si and needle shaped intermetallic compounds were observed by optical microscope. These needle shaped intermetallic compounds were identified as ${\delta}Al_4FeSi_2$- by XRD and EDX analysis. The ultimate tensile strength(UTS) of these alloy extrudates was increased from 324 to 390 MPa with decreasing powder size range from 120~210 $\mu\textrm{m}$ to 10~64 $\mu\textrm{m}$. A value of Micro-vic-kers hardness was simillar to the result of UTS. These extrudates showed better wear resistance than those of Al-20Si-2X(X : Ni, Cr, Zr), although they are insensitive to the size distribution. These results indicate that the presentation of ${\delta}Al_4FeSi_2$ intermetallic compounds contributed to the wear resistance improvement.

  • PDF

Changes in the Surface Characteristics of Gas-atomized Pure Aluminum Powder during Vacuum Degassing

  • Yamasaki, Michiaki;Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1039-1040
    • /
    • 2006
  • Vacuum degassing is essential in the preparation of RS P/M aluminum alloys to remove adsorbates and for the decomposition of hydrated-$Al_{2}O_3$ on the powder surface. Changes in the surface characteristics during vacuum degassing were investigated by X-ray photoelectron spectroscopy and temperature-programmed desorption measurement. Hydrated-$Al_{2}O_3$ decomposition to crystalline-$Al_{2}O_3$ and hydrogen desorption on the surface of argon gas-atomized aluminum powder occurred at 623 K and 725 K, respectively. This temperature difference suggests that the reaction converting hydrated-$Al_{2}O_3$ to crystalline-$Al_{2}O_3$ during vacuum degassing should be divided into the two reactions $"2Al+Al_{2}O_3{\cdot}3H_2O\;2Al_{2}O_3+6H_{surf}"and"6H_{surf}3H_2"$.

  • PDF

Study on the Compaction Properties of Fe-Si-Al-Graphite Powder Mixtures (Fe-Si-Al-Graphite 분말 혼합체의 압축 특성 연구)

  • Jeong, Jun Hyeok;Choi, Jinnil
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.300-304
    • /
    • 2020
  • In this paper, a durability study is presented to enhance the mechanical properties of an Fe-Si-Al powder-based magnetic core, through the addition of graphite. The compressive properties of Fe-Si-Al-graphite powder mixtures are explored using discrete element method (DEM), and a powder compaction experiment is performed under identical conditions to verify the reliability of the DEM analysis. Important parameters for powder compaction of Fe-Si-Al-graphite powder mixtures are identified. The compressibility of the powders is observed to increase as the amount of graphite mixture increases and as the size of the graphite powders decreases. In addition, the compaction properties of the Fe-Si-Al-graphite powder mixtures are further explored by analyzing the transmissibility of stress between the top and bottom punches as well as the distribution of the compressive force. The application of graphite powders is confirmed to result in improved stress transmission and compressive force distribution, by 24% and 51%, respectively.