• Title/Summary/Keyword: Al matrix Composite

Search Result 341, Processing Time 0.023 seconds

Magnetic Pulsed Compaction and Sintering Characteristics of Al Composite Powders Reinforced with Waste Stainless Steel Short Fibers (폐 스테인레스강 단섬유로 강화한 알루미늄 복합분말의 자기펄스압 성형 및 소결 특성)

  • Hyun, Chang-Yong;Won, Chul-Hyun;Park, Jae-Soon
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.380-385
    • /
    • 2007
  • Characteristics of Al-based composites with waste stainless steel short fiber, fabricated by magnetic pulsed compaction and sintering were investigated. The compacts prepared by magnetic pulsed compaction showed high relative density and homogeneous microstructure compared with that by conventional press compaction. The relative density of sintered composites at $430^{\circ}C$ for 1 h exhibited the same value with compacts and decreased with increase in STS short fiber content. The reaction between Al and STS phase was confirmed by the microstructural analysis using EDS. The sintered composites, prepared by magnetic pulsed compaction, showed increased hardness value with increasing STS fiber content. Maximum yield strength of 100 MPa and tensile strength of 232 MPa were registered in the AI-based composite with 30 vol% STS short fiber.

Effects on extrusion ratio and temperature of shore fiber reinforcd metal matrix composites by rheo-compocating (반용융 가공법에 의한 단섬유 보강 급속복합재료의 강도에 미치는 압출비와 압출온도의 영향)

  • 윤한기;김석호;이상필
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.18-27
    • /
    • 1997
  • Al 6061 alloy reinforced with 10 vol.% ${\delta}-Al_2O_3$ short fiber was fabricated by Rheo-compocasting and squwwze cating. Extrusion processings were performed at temperatures from 40$0^{\circ}C$ to 55$0^{\circ}C$ with various extrusion ratio for curved shape dies. In proportion to the increase of extrusion ratios and temperatures, ultimate tensile strength for extruded materials improved. SEM observation of fractured surfsce was capcble oof accounting for fracture mechanism and bounding state of fiber and matrix.

  • PDF

Effect of Matrix Microstructure on Creep Properties of Squeeze Cast Magnesium Matrix Composites (용탕 단조한 Mg복합재료의 크립특성에 미치는 기지조직의 영향)

  • Kim, Byeong-Ho;Son, Jae-Hyoung;Park, Kyung-Chul;Park, Yong-Ho;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.29 no.4
    • /
    • pp.176-180
    • /
    • 2009
  • Effect of matrix microstructure on creep behaviors of squeeze cast magnesium matrix composites was investigated. Aluminum borate whisker was used as reinforcement and AZ31, AS52 and Sr added AS52 Mg alloys were used for matrix alloys. The reinforcement was distributed homogeneously and defect-free composite was manufactured. Creep tests were carried out at the temperature of $150^{\circ}C$ under the applied stress of 50 and 100 MPa for Mg alloys and Mg MMCs, respectively. The creep resistance of Mg MMCs was in this order: AS52-Sr > AS52 AZ31 MMCs. Void initiation during creep mainly occurred at $Mg/Mg_{17}Al_{12}$ interface and propagation went along grain boundaries. On the other hand, $Mg_2Si$ phase was not attributed to the creep void initiation.

Microstructure and Mechanical Properties of TiC-Co/Al Composites Prepared by Reaction-Bonded Sintering (반응결합 소결에 의한 TiC-Co/Al 복합체의 미세구조 및 기계적 특성)

  • 한인섭;남기웅;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.257-269
    • /
    • 1995
  • The TiC-Co/Al reaction-sintered products were prepared by the infiltration of various Co/Al metal mixture into the preform, and their microstructure, phases, and mechanical properties were investigated. With increasing the atomic ratio of Co/Al, tiC grain shape was changed from spherical to platelet particles, and the grain size increased. The crystalline phases found in the liquid matrix formed by the infiltration of Co/Al metal mixture were determined to be Al5Co2 and AlCo by EDS and XRD, and the two crystalline phases were located dominantly between TiC grains, when the Co/Al atomic ratio was lower than an unity. There was a tendency that the density, bending strength and fracture toughness increase with Co/Al atomic ratio until the infiltrated metal was 100% Co. The maximum value was achieved by the composition containing 100% Co infiltrated metal. The Vickers hardness decreased as Co/Al atomic ratio increased.

  • PDF

Microstructure and Mechanical Properties of in situ TiCp/Al Composites Fabricated by the Interfacial Reaction between SiC Particles and Liquid Al-Ti Alloy (SiC입자와 Al-Ti합금 용탕간반응에 의한 in situ 생성 TiC입자강화 Al합금복합재료의 조직과 기계적특성)

  • Lim, Suk-Won;Nakata, Hiromichi
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.170-179
    • /
    • 1997
  • A noble technique has been developed for fabricating in situ formed $TiC_p/Al$ composites. In this process, fairly stable TiC particles were in situ synthesized in liquid aluminum by the interfacial reaction between an Al-Ti melt and SiC, which is a comparatively unstable carbide from the view-point of thermodynamics. It is possible in the present process to generate TiC particles of nearly 1 ${\mu}m$ in diameter, even utilizing SiC of 14 ${\mu}m$ as raw material. However, the dispersion behavior of TiC particles in the matrix depends on the size of the raw material SiC. Decomposing finer SiC makes the dispersion of TiC particles more uniform and the mechanical properties of composites are improved accordingly. The structure of in situ composites and their mechanical properties are affected by the fabrication temperature and the stirring time. It has been found that the most suitable condition for fabrication should be applied depending on the size of the raw material, even if the same kinds of carbide are used. Furthermore, although Al-Ti-Si system intermetallic compounds are detected in a $TiC_p/Al-Si$ composite which is fabricated by conventional melt-stirrng method, these compounds can not be observed in a $TiC_p/Al-Si$ composite made by this in situ production method. Hence the mechanical properties of the in situ $TiC_p/Al-Si$ composite are superior to those of the conventional $TiC_p/Al-Si$ composites.

  • PDF

In Situ Observation of Slow Crack Growth in a Whisker-Reinforced Alumina Matrix Composite (SiC 휘스커 보강 알루미나 복합재료에서 Slow Crack Growth 현상의 직접관찰 연구)

  • 손기선;김우상;이성학
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.203-213
    • /
    • 1996
  • In this study the subcritical crack growth behavior in an Al2O3-SiCw composite has been investigated using in situ fracture technique of applied moment double cantilever beam (AMDCB) specimens indside an SEM. This technique allows the detailed observation of whisker and grain bridging in the crack wake region. The experimental results indicated that the KI-a curve was deviated from the conventional powder law form and that the existed a region where the rate of microcrack growth was decreased with increasing the externally applied stress intensity factor. This behavior could be explained by arising crack growth resistance i.e. R-curve behavior which was associated with crack shielding due to whisker and grain bridging. The R-curve was also analyzed from the KI-a curve data in order to quantify the bridging effect in the Al2O3-SiCw composite.

  • PDF

Static Creep Characteristics of AI-10wt% TiCp Composites (Al-10wt% TiCp복합재료의 정적 크립특성)

  • Rhim, J.K.;Park, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.3
    • /
    • pp.159-165
    • /
    • 1993
  • Creep tests of the TiC particulate reinforced Al composite have been conducted in the temperature ranges from 200 to $500^{\circ}C$. The steady-state cree rate of the composite depended strongly on the temperature and ap' plied stress. The stress exponent for the steady state creep rate of the composites was approximately 17.5 and the activation anergy was calculated to be 390KJ/mol. The steady-state creep equation could be written as $\acute{\varepsilon}_{ss}$ $$(s^{-1})=1.5{\times}10^{-9}\;{\sigma}^{17.5}\exp(-390000/RT)$$. Fracture surface examination showed that the fracture mode of the particulate reinforced composite was ductile by plastic tearing of the aluminum matrix and TiC particle interfaces were offered as sites for crack.

  • PDF

Flexure and tension tests of newly developed ceramic woven fabric/ceramic matrix composites (새로 개발된 세라믹 직포 보강 세라믹 기지 복합체의 인장 및 곡강도 시험)

  • Dong-Woo Shin;Jin-Sung Lee;Chang-Sung Lim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.73-87
    • /
    • 1996
  • The mechanical properties of 2D ceramic composites fabricated bythe newly developed powder infiltration and subsequent multiple impregnation process were characterised by both 3-point flexure and tensile tests. These tests were performed with strain gauge and acoustic emission instrument. The woven fabric composites used for the test have the basic combinations of $Al_{2}$$O_{3}$ fabric/$Al_{2}$$O_{3}$ and SiC fabric (Tyranno)/SiC. Uniaxially aligned SiC fibre(Textron SCS-6)/SiC composites were also tested for comparison, The ultimate flexural strength and first-matrix cracking stress of SiC fabric/SiC composite with 73% of theoretical density were about 300 MPa and 77 MPa respectively. However, the ultimate tensile strengths of composite were generally one third of flexural strengths, and first-matrix cracking stress in a tension test was also much lower than the value obtained from flexure test. The lower mechanical properties measured by tension test were analysed quantitatively bythe differences in stressed volume using Weibull statistics. This showed that the ultimate strength and the firs-tmatrix cracking stress of woven laminate composites were mainly determined bythe gauge length of fibres and the stressed volume of matrix respectively. Incorporation of SiC whiskers into the matrix increased first-matrix cracking stress by increasing the matrix failure strain of composites.

  • PDF

The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel

  • Srivatsan, T.S.;Manigandan, K.;Godbole, C.;Paramsothy, M.;Gupta, M.
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.169-182
    • /
    • 2012
  • In this paper the intrinsic influence of micron-sized nickel particle reinforcements on microstructure, micro-hardness tensile properties and tensile fracture behavior of nano-alumina particle reinforced magnesium alloy AZ31 composite is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced nanocomposite counterpart (AZ31/1.5 vol.% $Al_2O_3$/1.5 vol.% Ni] were manufactured by solidification processing followed by hot extrusion. The elastic modulus and yield strength of the nickel particle-reinforced magnesium alloy nano-composite was higher than both the unreinforced magnesium alloy and the unreinforced magnesium alloy nanocomposite (AZ31/1.5 vol.% $Al_2O_3$). The ultimate tensile strength of the nickel particle reinforced composite was noticeably lower than both the unreinforced nano-composite and the monolithic alloy (AZ31). The ductility, quantified by elongation-to-failure, of the reinforced nanocomposite was noticeably higher than both the unreinforced nano-composite and the monolithic alloy. Tensile fracture behavior of this novel material was essentially normal to the far-field stress axis and revealed microscopic features reminiscent of the occurrence of locally ductile failure mechanisms at the fine microscopic level.

Preparation of Al2O3 Platelet/PMMA Composite and Its Mechanical/Therml Characterization (판상 Al2O3/PMMA 복합체 제조 및 기계적/열적 특성분석)

  • Nam, Kyung Mok;Lee, Yoon Joo;Kwon, Woo Teck;Kim, Soo Ryong;Lim, Hyung Mi;Kim, Hyungsun;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.438-441
    • /
    • 2012
  • Abalone shell is a high strength and light weighted ceramic composite material, which is composed of $CaCO_3$ platelet and protein. Microstructure of abalone shell has a matrix structure that is similar to the bricks and mortar. The technology inspired from nature which consumes low energy at low temperature is called bioinspired technology. In this study, to make high strength and light weighted ceramic composite materials using bioinspired technology, porous green body was prepared with $Al_2O_3$ platelet. PMMA was infiltrated into the porous green body, then warm pressed to eliminate pores present in the composite. The microstructure of the composite was observed with FESEM, and the mechanical/thermal properties were measured.