• 제목/요약/키워드: Al anodization

Search Result 52, Processing Time 0.026 seconds

Investigation of Functional 6061 Aluminum Alloy Oxide Film with Anodization Voltage and its Corrosion Resistance

  • Jisoo Kim;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.399-407
    • /
    • 2023
  • This study investigated the formation of oxide films on 6061 aluminum (Al) alloy and their impacts on corrosion resistance efficiency by regulating anodization voltage. Despite advantageous properties inherent to Al alloys, their susceptibility to corrosion remains a significant limitation. Thus, enhancing corrosion resistance through developing protective oxide films on alloy surfaces is paramount. The first anodization was performed for 6 h with an applied voltage of 30, 50, or 70 V on the 6061 Al alloy. The second anodization was performed for 0.5 h by applying 40 V after removing the existing oxide film. Resulting oxide film's shape and roughness were analyzed using field emission-scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Wettability and corrosion resistance were compared before and after a self-assembled monolayer (SAM) using an FDTS (1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane) solution. As the first anodization voltage increased, the final oxide film's thickness and pore diameter also increased, resulting in higher surface roughness. Consequently, all samples exhibited superhydrophilic behavior before coating. However, contact angle after coating increased as the first anodization voltage increased. Notably, the sample anodized at 70 V with superhydrophobic characteristics after coating demonstrated the highest corrosion resistance performance.

Formation Behavior of Anodic Oxide Films on Al7075 Alloy in Sulfuric Acid Solution (황산용액에서 Al7075 합금 표면의 양극산화피막 형성거동)

  • Moon, Sungmo;Yang, Cheolnam;Na, Sangjo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • The present work is concerned with the formation behavior of anodic oxide films on Al7075 alloy under a galvanostatic condition in 20 vol.% sulfuric acid solution. The formation behaviour of anodic oxide films was studied by the analyses of voltage-time curves and observations of colors, morphologies and thicknesses of anodic films with anodization time. Hardness of the anodic oxide films was also measured with anodization time and at different positions in the anodic films. Six different stages were observed with anodiziation time : barrier layer formation (stage I), pore formation (stage II), growth of porous films (stage III), abnormal rapid oxide growth (stage IV), growth of non-uniform oxide films (stage V) and breakdown of the thick oxide films under high anodic voltages (stage VI). Hardness of the anodic oxide films appeared to decrease with increasing anodization time and with the position towards the outer surface. This work provides useful information about the thickness, uniformity, imperfections and hardness distribution of the anodic oxide films formed on Al7075 alloy in sulfuric acid solution.

Effect of Al2O3-ZrO2 Composite Oxide Thickness on Electrical Properties of Etched Al Foil

  • Chen, Fei;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.160-165
    • /
    • 2016
  • To increase the capacitance of an Al electrolytic capacitor, the anodic oxide film, $Al_2O_3$, was partly replaced by an $Al_2O_3-ZrO_2$ (Al-Zr) composite film prepared by the vacuum infiltration method and anodization. The microstructure and composition of the prepared samples were investigated by scanning electron microscopy and transmission electron microscopy. The coated and anodized samples showed multi-layer structures, which consisted of an inner Al hydrate layer, a middle Al-Zr composite layer, and an outer $Al_2O_3$ layer. The thickness of the coating layer could go up to 220 nm when the etched Al foil was coated 8 times. The electrical properties of the samples, such as specific capacitance, leakage current, and withstanding voltages, were also characterized after anodization at 100 V and 600 V. The capacitances of samples with $ZrO_2$ coating were 36.3% and 27.5% higher than those of samples without $ZrO_2$ coating when anodized at 100 V and 600 V, respectively.

Formation of Anodic Al Oxide Nanofibers on Al3104 Alloy Substrate in Pyrophosphoric Acid (피로인산 전해질에서 양극산화를 통한 알루미늄 3104 합금 나노섬유 산화물 형성)

  • Kim, Taewan;Lee, Kiyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.1
    • /
    • pp.7-12
    • /
    • 2021
  • In this study, we investigated the formation of the metal oxide nanostructure by anodization of aluminum 3104H18 alloy. The anodization was performed in pyrophosphoric acid (H4P2O7) electrolyte. By the control of anodization condition such as concentration of electrolyte, anodization temperature and applied voltage, nanoporous or nanofiber structures were obtained. The optimal anodization condition to form nanofiber structures are 75 wt% of H4P2O7 at 30 V and 20℃. When anodization was performed at over 40 V, nanoporous structures were formed due to accelerated dissolution reaction rate of nanofiber structures or increasing thickness of channel wall.

Effect of Equal Channel Angular Pressing on the Pitting Corrosion Resistance of Hard Anodized Al5052 Alloy (경질양극산화를 실시한 Al5052합금의 내공식성에 미치는 ECAP의 영향)

  • Son, Injoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.142-148
    • /
    • 2015
  • The effect of equal channel angular pressing (ECAP) on the pitting corrosion resistance of hard anodized Al5052 alloy was investigated. The degree of internal stress generated in anodic oxide films during hard anodization was also evaluated with a strain gauge method. The pitting corrosion resistance of hard anodized Al5052 alloy was greatly decreased by ECAP. Cracks occurred in the anodic oxide film during hard anodization and these cracks were larger and deeper in the alloy with ECAP than without. The pitting corrosion was accelerated by cracks. The internal stress present in the anodic oxide films was compressive and the stress was higher in the alloys with ECAP than without, resulting in an increased likelihood of cracks. The pitting corrosion resistance of hard anodized Al5052 alloy was improved by annealing at the range of 473-573K after ECAP processed at room temperature for four passes. The compressive internal stress gradually decreased with increasing annealing temperature. It is assumed that the improvement in the pitting corrosion resistance of hard anodized Al5052 alloy by annealing may be attributed to a decrease in the likelihood of cracks due to the decreased internal stresses in anodic oxide films.

Effects of Heat Treatment on Surface Properties of Aluminum 6061 Alloy After Anodization (알루미늄 6061 합금 양극산화 후 열처리에 따른 표면 특성 관찰)

  • Seungmin, Lee;Chanyoung, Jeong
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.495-502
    • /
    • 2022
  • Anodization is a representative electrochemical surface treatment method that can improve both heat resistance and corrosion resistance by forming an anodization film on the surface of the aluminum. However, these properties can be changed after an additional heat treatment process. In this study, Al 6061 was subjected to an anodization process at 60 V for 1 hour, 5 hours, or 9 hours. An additional heat treatment process was performed at 500 ℃ for 30 minutes. Field emission scanning electron microscopy (FE-SEM) analysis revealed that the thickness of the anodized film was increased in proportion to the anodization time. Both pore size and pore diameter of the anodized film was also increased after anodization. After an additional heat treatment process, there were no significant changes in the thickness, pore size, or pore diameter of the anodized film. Heat resistance was confirmed through thermal analysis and chemical resistance was evaluated with a potentiodynamic polarization test.

Investigation of the Growth Kinetics of Al Oxide Film in Sulfuric Acid Solution (황산 용액에서 Al 산화피막의 생성과정 연구)

  • Chon, Jung-Kyoon;Kim, Youn-Kyoo
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.380-386
    • /
    • 2010
  • We have investigated the growth kinetics of Al oxide film by anodization in sulfuric acid solution and the electronic properties of this film using electrochemical impedance spectroscopy. Al oxide film consisted $Al_2O_3$ was grown based on the point defect model and shown the eclctronic properties of n-type semiconductor.

Anodization of Aluminium Samples in Boric Acid Solutions by Optical Interferometry Techniques

  • Habib, K.
    • Corrosion Science and Technology
    • /
    • v.4 no.6
    • /
    • pp.217-221
    • /
    • 2005
  • In the present investigation, holographic interferometry was utilized for the first time to monitor in situ the thickness of the oxide film of aluminium samples during anodization processes in boric acid solutions. The anodization process (oxidation) of the aluminium samples was carried out by the technique of the electrochemical impedance spectroscopy(EIS), in different concentrations of boric acid (0.5-5.0% $H_3BO_3$) at room temperature. In the mean time, the real-time holographic interferometry was used to measure the thickness of anodized (oxide) film of the aluminium samples in solutions. Consequently, holographic interferometry is found very useful for surface finish industries especially for monitoring the early stage of anodization processes of metals, in which the thickness of the anodized film of the aluminium samples can be determined without any physical contact. In addition, measurements of electrochemical values such as the alternating current (A.C) impedance(Z), the double layer capacitance($C_{dl}$), and the polarization resistance(Rp) of anodized films of aluminium samples in boric acid solutions were made by the electrochemical impedance spectroscopy(EIS). Attempts to measure electrochemical values of Z, Cdl, and Rp were not possible by holographic interferometry in boric acid especially in low concentrations of the acid. This is because of the high rate of evolutions of interferometric fringes during the anodization process of the aluminium samples in boric acid, which made measurements of Z, Cdl, and Rp are difficult.

Effects of Metal Anion Complexes in Electrolyte on the Properties of Anodic Oxide Films on ADC12 Al Alloy

  • Yoo, Hyeonseok;Lee, Chulho;Oh, Kiseok;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.130-134
    • /
    • 2016
  • The anodization of ADC12 aluminum alloy was investigated in the metal anionic acid media. Anodic oxide films containing foreign elements were formed on ADC12 Al alloy by anodization in the anion complex solution. Furthermore, the rough surface and cracks were considerably smoothened by the deposit of metal anions. When the size of metal anion was small, relatively large amount of metal anions was loaded in anodic films. Existence of $MoO_3$, $TiO_2$ and MgO was confirmed by XPS. According to the results of Tafel analysis, Mo oxide represented the most noble anti-corrosion potential due to $MoS_2$ formation. Corrosion current densities were generally higher than that of pristine anodic oxide without anion complexes.

Technology Trends in Fabrication of Nanostructures of Metal Oxides by Anodization and Their Applications (양극산화 기술을 이용한 금속산화물 나노구조 제조 및 응용 동향)

  • Choi, Jinsub;Lee, Jae Kwang;Lim, Jae Hoon;Kim, Sung Joong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.249-258
    • /
    • 2008
  • Nanoporous alumina with highly ordered pore arrays, which is prepared based on electrochemical anodization under the controlled conditions, has attracted great attention due to the variety of its applications. In case of porous alumina, the manipulation of nanoporous structures under different electrochemical conditions and their formation mechanisms have been studied for a long time. Recently, its principles have been applied to other valve metals. Especially, there have been a big success in the preparation of titania nanotubes via the anodization of titanium. In this paper, we review the anodization of aluminum and recent trends in anodization of Ti and other valve metals based on the principles of aluminum anodization.