• Title/Summary/Keyword: Al Hydrolysis

Search Result 138, Processing Time 0.026 seconds

Probing the Critical Residues for Intramolecular Fructosyl Transfer Reaction of a Levan Fructotransferase

  • Moon, Keum-Ok;Choi, Kyoung-Hwa;Kang, Ho-Young;Oh, Jeong-Il;Jang, Se-Bok;Park, Cheon-Seok;Lee, Jong-Hoon;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1064-1069
    • /
    • 2008
  • Levan fructotransferase (LFTase) preferentially catalyzes the transfructosylation reaction in addition to levan hydrolysis, whereas other levan-degrading enzymes hydrolyze levan into a levan-oligosaccharide and fructose. Based on sequence comparisons and enzymatic properties, the fructosyl transfer activity of LFTase is proposed to have evolved from levanase. In order to probe the residues that are critical to the intramolecular fructosyl transfer reaction of the Microbacterium sp. AL-210 LFTase, an error-prone PCR mutagenesis process was carried out, and the mutants that led to a shift in activity from transfructosylation towards hydrolysis of levan were screened by the DNS method. After two rounds of mutagenesis, TLC and HPLC analyses of the reaction products by the selected mutants revealed two major products; one is a di-D-fructose-2,6':6,2'-dianhydride (DFAIV) and the other is a levanbiose. The newly detected levanbiose corresponds to the reaction product from LFTase lacking transferring activity. Two mutants (2-F8 and 2-G9) showed a high yield of levanbiose (38-40%) compared with the wild-type enzyme, and thus behaved as levanases. Sequence analysis of the individual mutants responsible for the enhanced hydrolytic activity indicated that Asn-85 was highly involved in the transfructosylation activity of LFTase.

Chemical Structure of the Major Color Component from a Korean Pigmented Rice Variety (한국산 유색미에서 분리한 안토시아닌의 화학구조)

  • Cho, Man-Ho;Paik, Young-Sook;Yoon, Hye-Hyun;Hahn, Tae-Ryong
    • Applied Biological Chemistry
    • /
    • v.39 no.4
    • /
    • pp.304-308
    • /
    • 1996
  • The major color component of a Korean pigmented rice (Oeyza sativa var. Suwon 415) was purified with Amberlite XAD-7 column and preparative paper chromatography. The purified pigment was determined as anthocyanin by paper chromatography, UV/Vis and NMR spectroscopy. The $\lambda_{max}$ of the Purified anthocyanin on UV/Vis spectrum were 529 nm and 281 nm. The $A_{440}/A_{529}$ value of the purified anthocyanin was 23% suggesting the presence of 3-glycosidic structure. The aglycone from acid hydrolysis showed bathochromic shift (18 nm) in the presence of $AlCl_3$ indicating that the anthocyanidin contained free adjacent hydroxyl groups such as cyanidin, delphinidin, petunidin or luteolinidin. The sugar moiety obtained from acid hydrolysis was determined as glucose by paper chromatography. The NMR spectra showed that the aglycone was cyanidin and the sugar was ${\beta}-D-glucopyranose$. Thus, the chemical structure of the purified anthocyanin was identified as cyanidin $3-O-{\beta}-D-glucopyranoside$.

  • PDF

Characteristics of Al Alloy as a Material for Hydrolysis Reactor of NaBH4 (NaBH4 가수분해 반응기 소재로서 알루미늄 합금의 특성 연구)

  • Jung, Hyeon-Seong;Oh, Sung-June;Jeong, Jae-Jin;Na, Il-Chai;Chu, Cheun-Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.677-681
    • /
    • 2015
  • Aluminum alloy was examined as a material of low weight reactor for hydrolysis of $NaBH_4$. Aluminum is dissolved with alkali, but there is NaOH as a stabilizer in $NaBH_4$ solution. To decrease corrosion rate of aluminum, decrease NaOH concentration and this result in loss of $NaBH_4$ during storage of $NaBH_4$ solution. Therefore stability of $NaBH_4$ and corrosion of aluminum should be considered in determining the optimum NaOH concentration. $NaBH_4$ stability and corrosion rate of aluminum were measured by hydrogen evolution rate. $NaBH_4$ stability was tested at $20{\sim}50^{\circ}C$ and aluminum corrosion was measured at $60{\sim}90^{\circ}C$. The optimum concentration of NaOH was 0.3 wt%, considering both $NaBH_4$ stability and aluminun corrosion. $NaBH_4$ hydrolysis reaction continued 200min in aluminum No 6061 alloy reactor with 0.3 wt% NaOH at $80{\sim}90^{\circ}C$.

Alumimium Titanate-Mullite Composites : Part1,Thermal Durability (Alumimium Titanate-Mullite 복합체: Part1, 열적 내구성)

  • Kim, Ik-Jin;Gang, Won-Ho;Go, Yeong-Sin
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.624-631
    • /
    • 1993
  • The composites in the system aluminium titanate-mullite were synthesized by stepwise alkoxide hydrolysis of tetraethylorthosilicate, Si(OCLH5), and titaniumtetraethoxide, $Ti(OC_{2}H_{5})_4$ in $Al_{2}O_{3}$ ethanolic colloidal solution. All particles produced by sol-gel-process were amorphous, monodispesed and had a narrow particle size distribution. Sintered bodies at $1600 ^{\circ}C$ for 2h were subjected to prolonged durability tests-on the one hand annealing at the critical decomposition temperature of $1100 ^{\circ}C$ for lOOh and on the other cyclic thermal shock between 750 and $1400 ^{\circ}C$ for 100h. The best thermal durability was achieved by a composition containing 70 and 80 vol% aluminium titanate, which showed little change in microstructure and thermal expansion cycles during the tests. The microstructural degradation of samples studied using scanning electron microscopy, X-ray diffraction, and dilatometry, was presented here. The study was conducted in order to predict the service life of aluminium titanate-mullite ceramics formed by this processing route.

  • PDF

Development of Fly Ash/slag Cement Using Alkali-activated Reaction(2) - Reaction products and microstructure - (알칼리 활성반응을 이용한 플라이 애쉬/슬래그 시멘트 개발(2) - 반응생성물과 미세구조 -)

  • Park, Sang-Sook;Kang, Hwa-Young;Han, Kwan-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.810-819
    • /
    • 2007
  • Investigation of alkali activation of fly ash and blast furnace slag was carried out using waterglass and sodium hydroxide. XRD, FTIR, $^{29}Si$ and $^{27}Al$ NMR, TGA and SEM were used to observed the reaction products and microstructure of the fly ash/slag cement (FSC) pastes. The reaction products were amorphous or low-ordered calcium silicate hydrate and aluminosilicate gel produced from alkali activation of blast furnace slag and fly ash, respectively. On the basis of this investigation, waterglass solution with a modulus(Ms) of 1.0 and 1.2 is recommended for alkali activation of fly ash and blast furnace slag. Morphology of FSC pastes alkali-activated with Ms of 1.0 and 1.2 shows a more solid and continuous matrix due to restructuring of gel-like reaction products from alkali-activated fly ash and blast furnace slag together with another hydrolysis product(i.e., silica gel) from water glass.

A study on the Rapid Processing of Hydrolyzed Anchovy Paste and Its Quality Stability (효소분해법에 의한 페이스트형 속성 멸치젓의 제조 및 품질에 관한 연구)

  • HAN Bong-Ho;KIM Sang-Ho;CHO Hyun-Duk;CHO Man-Gi;BAE Tae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.79-87
    • /
    • 1997
  • A study on the processing method of anchovy hydrolysate paste (AHP) was carried out to improve the sensory quality of salted and fermented fish. Homogenized whole anchovy was hydrolyzed using commercial pretenses, Complex enzyme-2000 (CE, Pacific Chem. Co.) and Alcalase (AL, Novo), in a cylindrical vessel with 4 baffle plates and 6-bladed turbine impeller. Optimal pH, temperature, and enzyme concentration for the hydrolysis with CE and AL were $7.0,\;52^{\circ}C,\;7\%$, and $8.0,\;60^{\circ}C,\;6\%$, respectively. The rational amount of water for homogenization, agitation speed, and hydrolyzing time were $100\%\;(w/w)$, 100 rpm, and 210 min, respectively. To make the hydrolysate to paste type, it was effective to mix the additives, such as starch, soybean protein, agar, and carrageenan gum to the hydrolysate 5 min before the end of boiling at $100^{\circ}C$ for 30 min. Minimal NaCl concentration for long-term preservation was $15\%$, and this could be reduced to $12\%$ by adding $5\%$ of KCl. yield of the AHP based on the total nitrogen content was $94.6\~97.0\%,\;and\;86.0\~89.2\%$, of the nitrogen was amino nitrogen. Salinity, pH and histamine content of the AHP prepared with $12\%$ NaCl and $5\%$ KCl were $9.3\~9.9\%,\;6.1\~6.2$, and below 13 mg/100 g, respectively. The AHP was stable at $26{\pm}3^{\circ}C$ for 60 days on bacterial growth, and addition of $0.05\%$ of rosemary (Herbalox) extract was effective to inhibit the lipid oxidation of the AHP during storage.

  • PDF

Purification and Characterization of Protease Produced by Bacillus subtilis YG-95 (Bacillus subtilis YG-95가 생산하는 protease의 정제와 특성)

  • Byun, Young-Gag;Kim, Seong-Ho;Joo, Hyun-Kyu;Lee, Gap-Sang;Yim, Moo-Hyun
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.349-354
    • /
    • 1998
  • The protease produced by Bacillus subtilis YG-95 was purified by precipitating with ammonium sulfate, DEAE-sepharose 6B and Sephadex G-100 column chromatogtaphies and its purified enzymological characteritics were investigated. The molecular weight of purified protease was estimated about 43kilodalton by SDS PAGE The optimum pH and temperature for the purified protease activity were pH 10.0 and $55^{\circ}C$, respectively. The enzyme was stable in broad range of pH 5.0 to 12.0. and at the below $45^{\circ}C$. The purified enzyme activty was inhibited by $Fe^{3+}$ and $Al^{3+}$. The activity was significantly inhibited more than 80% by O-Phenanthroline, PMSF and SDS. The $K_m$ value of the purified enzyme against Soy Protein Isolate as a substrate was 1.28 mg/ml.

  • PDF

Design and Validation of a Fuel Cell System with a NaBH4 Hydrogen Generation System for Future Defense Unmanned Vehicles (미래 국방 무인 이동체를 위한 NaBH4 수소 발생 시스템 기반 연료전지 시스템 설계 및 검증)

  • SEONG MO YUN;MIN JAE KIM;CHAE MIN HWANG;TAE HOON LEE;SU SANG YU;TAEK HYUN OH
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.152-161
    • /
    • 2024
  • In this study, a fuel cell system for future defense unmanned vehicles was designed and validated. A Co/Al2O3-Ni foam catalyst for NaBH4 hydrolysis was characterized using several analytical methods. A NaBH4 hydrogen generation system with the Co/Al2O3-Ni foam catalyst continuously generated hydrogen at elevated reaction temperatures. The fuel cell system with the NaBH4 hydrogen generation system was designed and tested. The performance of the fuel cell system was comparable to that of the fuel cell system using pure hydrogen. Therefore, the fuel cell system with the NaBH4 hydrogen generation system is a suitable power source for future defense unmanned vehicles owing to its easy refueling and simple system.

Kinetic Study of Proton Exchange between Al($H_2O$)$_6^{3+}$ Ion and Bulk Water Molecules (Ⅰ) (Al($H_2O$)$_6^{3+}$ 이온과 물 용매 분자 사이에서의 수소 이온 교환의 반응속도론적 연구 (Ⅰ))

  • Moon-Hwan Cho;Jin-Ho Kim;Chang-Ju Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.436-442
    • /
    • 1988
  • The $^1H-nmr$ lineshapes of $H_2O$ in the solution containing $Al^{3+}$ ion have been measured as a function of temperature and $H^+$-ion concentration. Above [$H^+$] = 0.06, the lineshape were analyzed by the uncoupled two-site exchange model. From the proton exchange rate between hexaaquaaluminium ion and bulk water as a function of H-ion concentration. These kinetic data could be fitted to a following linear rate law; that is; 1/${\tau}$ = k$_1$/12 + $k_2$[$H^+$]/6. The following proton exchange parameters were obtained; $k_1^{298}$ = 38.5s$^{-1}$ ${\{Delta}H_1^{\neq}$ = $42.9kJ mole^{-1}$ ${\{Delta}S_1^{\neq}$ = -48.6J $mole^{-1}K^{-1}$ $k_2^{298}$ = $172s^{-1}mole^{-1}$ ${\{Delta}H_2^{\neq}$ = 27.8kJ $mole^{-1}$ ${\{Delta}S_2^{\neq}$ = -90.3J $mole^{-1}K^{-1}$ These activation parameters are indicating an associative interchange, Ia, mechanism for the acid-hydrolysis of hexaaquaaluminium ion and the proton exchange between the hydration spheres of $Al^{3+}$ and $H^+$.

  • PDF

Gas Permeation Properties of Polymeric Membranes for Biosensor Prepared from Poly(vinyl chloride) Derivatives (Poly(vinyl chloride) 유도체로부터 제조된 바이오센서용 고분자막의 기체 투과특성)

  • Lim, Chun-Won;Kim, Wan-Young;Lee, Youn-Sik;Yoon, Jeong-Won;Jeong, Yong-Seob
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.362-366
    • /
    • 1999
  • Membranes for biosensor were prepared from poly(vinyl chloride) (PVC)l derivatives using the solution casting method, and their gas permeabilities were studied. The polymer membranes dried slowly in air showed higher permeability coefficients than those dried in vacuum. The permeabilily coefficients of carboxylated poly(vinyl chloride) (CPVC) membranes for $O_2$ and $CO_2$ decreased as the pressure of the feed gas increased. The addition of dioctylphthalate (DOP) enhanced the permeation rates for $O_2$ and $CO_2$. For example, the permeability coefficients of CPVC membranes containing 30 wt. % DOP for $O_2$ and $CO_2$ at 100 psig were 2.03 and 0.96 Barrer, respectively, which were about 4~5 times higher than those of the membranes without DOP. Poly(vinyl chloride-co-vinyl acetate-co-vinyl alcohol) (Syn-PVCAcAl) obtained by hydrolysis of poly(vinyl chloride-co-vinyl acetate (PVCA) showed a higher permeability coefficient for $CO_2$ in the presence of DOP than that for commercial PVCAcAl, but did not show any significant difference in permeability for $O_2$.

  • PDF