• Title/Summary/Keyword: Al 1050 sheet

Search Result 39, Processing Time 0.034 seconds

Texture and Plastic Strain Ratio Changes of Hot Asymmetrically Rolled AA1050 Al Sheet (열간 비대칭 압연한 AA1050 Al 판재의 집합조직과 소성변형비 변화)

  • Hamrakulov, B.;Lee, C.W.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.287-293
    • /
    • 2019
  • The plastic strain ratio is one of the factors of the deep drawability of metal sheets. The plastic strain ratio of Al sheet is low value. Therefore, it is necessary to increase the plastic strain ratio in order to improve the deep drawability of the Al sheet. This study investigated the increase in the plastic strain ratio and the texture change of AA1050 Al sheet after the hot asymmetric rolling. The average plastic strain ratio of initial AA1050 Al sheets was 0.41. After 84% hot asymmetric rolling at $400^{\circ}C$, the average plastic strain ratio was 0.77. The average plastic strain ratio of 84% hot asymmetrically rolled AA1050 Al sheet at $400^{\circ}C$ is 1.9 times higher than that of initial AA1050 Al sheet. The ${\mid}{\Delta}R{\mid}$ of 84% hot asymmetrically rolled AA1050 Al sheet at $400^{\circ}C$ is 1/2 times lower than that of initial AA1050 Al sheet. This result is due to the development of the intensity of the ${\gamma}-fiber$ texture and the decrease of the intensity of {001}<100> texture after the hot asymmetric rolling of AA1050 Al sheet.

An Experimental Study On The Formability of Aluminum 1050 and 5052 Sheet Metal (Al 1050, 5020 판재의 성형성에 관한 실험적 고찰)

  • 강용기;박진욱;문영훈
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.27-34
    • /
    • 2000
  • Sheet metal formabilities for aluminum 1050 and 5052 were experimentally investigated in this study. Deep drawability, bendability and stretch formability were measured at each process condition and correlated with tensile properties of sheet metal. To compare the formabilities of aluminum 1050 and 5052 sheets with those of steel sheets, deep drawing quality(DDQ) steel sheets are also tested at the same test conditions. Through the experimental studies, influential process variables for each forming process were obtained and correlated with the tensile properties. The comparisons of sheet metal formabilities with those of steed sheets showed that aluminum 1050 and 5052 is inherently deficient in formability than steel sheets but Al 5052 that has highter n and r value than al 1050 showed better formabilities.

  • PDF

Development of Finite Element Program for Analyzing Springback Phenomena of Non-isothermal Forming Processes for Aluminum Alloy Sheets(Part 1 : Experiment) (알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 ( 1부 : 실험 ))

  • 금영탁;유동열;한병엽
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.202-207
    • /
    • 2003
  • In order to examine the springback amount and material properties of aluminum alloy sheets (AL1050 and AL5052) in the warm forming which forms the sheet above the room temperature, the stretch bending and draw bending tests and tensile test in various high temperatures are carried out. The warm forming temperature 15$0^{\circ}C$ is a transition in terms of the material properties: over the forming temperature 15$0^{\circ}C$, them $\sigma$$_{YS}$ , $\sigma$$_{TS}$ , E, K, n, etc. are bigger but $\varepsilon$ and plastic strain ratio are smaller. Below the forming temperature 15$0^{\circ}C$, there are no big differences in material properties as the forming temperature changes. AL5052 sheet has more springback effect than AL1050 sheet. While the springbacks of AL5052 and AL1050 sheets show a big reduction over the warm forming temperature 15$0^{\circ}C$ in the stretch bending test, the springback rapidly reduces in the warm forming temperature 15$0^{\circ}C$-20$0^{\circ}C$ for AL5052 sheet and 20$0^{\circ}C$-25$0^{\circ}C$ for AL1050 sheet in the draw bending test.

Microstructure and Mechanical Properties of AA1050/AA6061/AA1050 Layered Sheet Aging-Treated after Cold Roll-Bonding (냉간접합압연 후 시효처리된 AA1050/AA6061/AA1050 층상판재의 미세조직 및 기계적 성질)

  • Sang-Hyeon Jo;Seong-Hee Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.565-571
    • /
    • 2023
  • AA1050/AA6061/AA1050 layered sheet was fabricated by cold roll-bonding process and subsequently T4 and T6 aging-treated. Two commercial AA1050 sheets of 1 mm thickness and one AA6061 sheet of 2 mm thickness were stacked up so that an AA6061 sheet was located between two AA1050 sheets. After surface treatments such as degreasing and wire brushing, they were then roll-bonded to a thickness of 2 mm by cold rolling. The roll-bonded Al sheets were then processed by natural aging (T4) and artificial aging (T6) treatments. The as roll-bonded Al sheets showed a typical deformation structure, where the grains are elongated in the rolling direction. However, after the T4 and T6 aging treatments, the Al sheets had a recrystallized structure consisting of coarse grains in both the AA5052 and AA6061 regions with different grain sizes in each. In addition, the sheets showed an inhomogeneous hardness distribution in the thickness direction, with higher hardness in AA6061 than in AA1050 after the T4 and T6 age treatments. The tensile strength of the T6-treated specimen was higher than that of the T4-treated one. However, the strength-ductility balance was much better in the T4-treated specimen than the T6-treated one. The tensile properties of the Al sheets fabricated in the present study were compared with those in a previous study.

Texture and Plastic Strain Ratio Changes with the Number of Passes of Asymmetric Rolling in AA1050 Al Alloy Sheet (비대칭 압연 패스 회수에 따른 AA1050 Al 판재의 집합조직과 소성변형비 변화)

  • Nam, Su-Kwon;Jeong, Hae-Bong;Kim, In-Soo
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.502-507
    • /
    • 2010
  • The physical and mechanical properties and formability of sheet metals depend on preferred crystallographic orientations (texture). In this research work, the texture development and formability (plastic strain ratios) of AA1050 Al alloy sheets after 3 and 10 passes of asymmetric rolling and subsequent heat treatment were investigated. The plastic strain ratios of 10 passes asymmetrically rolled and subsequent heat treated samples are 1.3 times higher than those of the initial AA1050 Al alloy sheets. The ${\Delta}r$ of 10 passes of asymmetrically rolled and subsequent heat treated samples is 1/30 times lower than those of the initial AA1050 Al alloy sheets. The plastic strain ratios of 10 passes of asymmetrically rolled and subsequent heat treated Al sheets are higher than those of 3 passes ones. These results could be attributed to the formation of $\gamma$-fiber, ND//<111>, and the other texture components by means of asymmetric rolling in Al sheets.

Formability of ECAPed Al Alloy Sheet (ECAP한 Al 판재의 판재성형성)

  • Akramov, Saidmurod;Kim, I.;Lee, M.G.;Park, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.285-287
    • /
    • 2006
  • Ultra-fine grained and high hardened Al sheet was obtained by Equal channel angular pressing (ECAP). During this process the microstructure, the hardness and the texture of AA 1050 Al alloy sheet are changed by a severe shear deformation. The plastic strain ratio after the ECAP and subsequent heat-treatment condition has been investigated in this study. It was found that the average r-value of the ECAPed and subsequent heat-treated specimen was 1.7 times higher than those of the initial Al sheet. This could be attributed to the various texture formations through the ECAP and subsequent heat-treatment of AA 1050 Aluminum alloy sheet.

  • PDF

Fabrication and Mechanical Characterization of the Mg-Zn-RE/Al1050 Clad Sheet (Mg-Zn-RE/Al1050 클래드재의 제조 및 기계적 특성)

  • Shin, Beomsoo;Yoon, Sockyeon;Ha, Changseong;Yun, Seungkwan;Bae, Donghyun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.116-121
    • /
    • 2010
  • The Mg-Zn-RE alloy cladded with the thin Al1050 sheet was fabricated by means of a roll bonding process at $280^{\circ}C$.Microstructures and mechanical properties of the clad sheets were investigated. After heat treatment at $230^{\circ}C$ for 30 min, an Mg-rich diffusion layer with about $2{\mu}m$ in thickness was developed at the Mg and Al interface. Tensile tests were carried out in a temperature range up to $300^{\circ}C$. The clad sheet exhibits superior elongation to failure not only at room temperature but also at elevated temperatures compared with those of the Mg alloy sheet. For the deformed specimens, interface debonding does not occur and the diffusion layer shows only a few cracks.

Springback in Warm Forming of Aluminum Alloy Sheets (알루미늄 합금박판 온간 성형의 스프링백)

  • 한병엽;정기욱;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.152-155
    • /
    • 2003
  • In order to examine the springback of aluminum alloy sheets, AL1050 and AL5052, in the warm forming which forms the sheet above room temperature, the stretch bending and draw bending tests in various working temperatures were carried out. While the springbacks of AL5052 and AL1050 are tremendously reduced over 150$^{\circ}C$ in the stretch bending test, the springbacks in the draw bending test are rapidly reduced in 150$^{\circ}C$-200$^{\circ}C$ for AL5052 and 200$^{\circ}C$-250$^{\circ}C$ for AL1050. Using the FEM program, the forming and springback processes are analyzed. Though springback amounts of analysis result are slightly bigger than those of experiment, they showed the same trend in the decreasing springback as the forming temperature increases.

  • PDF

Interfacial Reaction on Heat Treatment of Roll-bonded STS304/Al1050/STS439 Clad Materials and its Effect on the Mechanical Properties (압연 제조된 STS439/Al1050/ STS304 Clad소재의 열처리에 따른 계면 반응과 기계적 특성에서의 계면 반응 효과)

  • Song, Jun-Young;Kim, In-Kyu;Lee, Young-Seon;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.910-915
    • /
    • 2011
  • The microstructures and mechanical properties of roll-bonded STS439/Al1050/STS304 clad materials were investigated after an annealing process at various temperatures. Interfacial layer was developed at the STS439/Al1050 and Al1050/STS304 interfaces at $550^{\circ}C$. STS439/Al1050/STS304 clad metals fractured suddenly in a single step and the fracture decreased with increasing annealing temperatures at $450^{\circ}C$. After annealing at $550^{\circ}C$, samples fractured in three steps with each layer fracturing independently. Interfacial layers formed at $550^{\circ}C$ with a high Vickers microhardness were found to be brittle. During tensile testing, periodic parallel cracks were observed at the interfacial reaction layer. Observed micro-void between Al1050 and the interfacial layer was found to weaken the Al1050/reaction layer interface, leading to the total separation between Al1050 and the reaction layer.