• Title/Summary/Keyword: Al/alumina

Search Result 823, Processing Time 0.027 seconds

A study on the effect of alumina coating on NiO dissolution in molten carbonate fuel cell (용융탄산염형 연료전지의 NiO 공기극의 용해거동에 미치는 알루미나 코팅효과에 대한 연구)

  • Ryu B. H.;Yoon S. P.;Han J;Nam S. W.;lim T.-H.;Hong S.-A.
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.64-71
    • /
    • 2005
  • The stability of alumina-coated NiO cathodes was studied in $Li_{0.62}/K_{0.38}$ molten carbonate electrolyte. Alumina was effectively coated on the porous Ni plate using galvanostatic pulse plating method. The deposition mechanism of alumina was governed by the concentration of hydroixde ions near the working electrode, which was controlled by the temperature of bath solution. Alumina-coated NiO cathodes were formed to $A1_2O_3-NiO$ solid solution by the oxidation process and their Ni solubilities were were than that of NiO up to the immersion time of 100h. However, their Ni solubilities increased and were similar to that of the bare NiO cathode after 100h. It was because aluminum into the solid solution was segregated to $\alpha-LiAlO_2$ on the NiO and its Product did not Play a role of the Physical barrier against NiO dissolution.

  • PDF

Zirconia-Alumina Composite Coating Materials for Low Temperature Process (저온 공정용 지르코니아-알루미나 복합 코팅제 연구)

  • Choi, Jongwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1561-1567
    • /
    • 2021
  • In this study, we have studied synthesis of zirconia-alumina composite coating materials via a low-temperature sol-gel process. The zirconia-alumina composites were prepared by coating zirconia precursor, alumina precursor, and organosilane mixture on a polyethylene terephthalate substrate through three steps: sol-gel process, low-temperature photocuring process, and heat treatment process. The structural properties and element analysis of the composites were confirmed by FT-IR and XPS. The coated composite showed a transmittance of 96% or more in the visible light region with a wavelength of 420 nm or more and pencil hardness of 9H or more. In case of the composite of the molar ratio of zirconia and alumina of 1:4, the highest nanoindentation hardness was measured with 1.212 GPa.

Fracture Behavior of Alumina-Titania-Monazite Composites

  • Paek, Yeong-Kyeun;Chung, Tai-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.443-447
    • /
    • 2005
  • Fracture behavior was investigated in the $Al_2O_3-TiO_2(3 wt{\%})-LaPO_4(25 wt{\%}$) composite ceramics. To improve the fracture toughness of alumina ceramics, $TiO_2$ and $LaPO_4$ as a second phase were introduced. The samples were made by conventional powder processing method. Green compacts were sintered at $1600^{\circ}C$ for 2 h in air. Fracture toughness was tested using Indentation Strength Bending(ISB) method. From the bending test, enhanced fracture toughness was found in the composite, compared to the pure and $TiO_2$-doped alumina. The main factor of the enhancement of fracture toughness seems to be attributed to the weak interphase role of the $LaPO_4$ as a particulate type.

Characterization of Sodium Borosilicate Glasses Containing Fluorides and Properties of Sintered Composites with Alumina

  • Ryu, Bong-Ki
    • The Korean Journal of Ceramics
    • /
    • v.1 no.2
    • /
    • pp.96-100
    • /
    • 1995
  • Recently, alumina/glass composites have been applied as a substrate material for hybrid IC and LSI multi-chip packaging. In this study, the characterization of sodium borosilicate glasses containing NaF and $AlF_3$ and the preparation of the resulted glass/alumina composites have been examined and the effect of the addition of fluorides on the thermal. and dielectric properties of the sintered composites have been studied. The sintering temperature of specimens was lowered by about 100-$150^{\circ}C$ by the addition of fluorine compared with the specimens without fluorine. The specimens containing fluorine showed slightly lower dielectric constants than those of the specimens without fluorine.

  • PDF

Surface roughness changes in Al2O3 induced by Nd:YAG laser irradiation

  • Yeo, Sun-Mok;Lee, Seong-Jun;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.331-331
    • /
    • 2011
  • We investigated the surface roughness and surface morphology changes for the laser irradiated alumina plates by a Q-switched Nd:YAG laser. For the laser irradiation on the alumina plates with ${\lambda}$ = 1064 nm, the surface roughness decreases with the increasing energy density. The surface morphology shows that the edges of alumina grains become dull with the increasing energy density. For ${\lambda}$ = 532 nm, increasing scan time at the same energy density causes a rough surface. We discuss the physical reason of the surface roughness and surface morphology changes.

  • PDF

Composition Dependence and Optical Properties of Polymethyl Methacrylate/Alumina Nanocomposite in the IR Region Determined by Kramers-Kronig Relation

  • Ghamari, Misagh;Ghasemifard, Mahdi
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.102-107
    • /
    • 2017
  • The dependence of the IR optical properties of PMMA/$Al_2O_3$ nanocomposite on the alumina content was investigated in the wavelength range of $3500-2800cm^{-1}$. The samples were prepared via emulsion polymerization technique using oleic acid as a coupling agent. Grafting density calculations were carried out by means of elemental analysis CHN to yield the best coupling agent content. FTIR analysis confirmed the existence of a chemical bond between aluminum oxide and oleic acid. The outcomes of XRD analyses showed the presence of cubic gamma aluminum oxide in the nanocomposite, in contrast to the amorphous nature of PMMA. TEM images showed the core-shell morphology of the particles other than pristine PMMA. Optical constants of the nanocomposite were calculated based on FTIR spectra and the Kramers-Kronig equations. The presence of nano alumina modified some of the optical indexes in IR region.

A Study of Nanoscale Structure of Anodic Porous Alumina film (다공성 알루미나 박막의 나노 스케일 구조에 관한 연구)

  • 정경한;신훈규;권영수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.801-806
    • /
    • 2003
  • In recent years, there has been large interest in the fabrication of the self organized nanoscale structures since not only their potential utilization in electronic, optoelectronic, and magnetic devices but also their fundamental interest such as uniformity and regularization. An attractive candidate of these materials is anodic porous alumina film(Al$_2$O$_3$) which is formed by the anodization of aluminum in an appropriate acid solution. In this study to fabricate the porous alumina film with very uniform and nearly parallel pores the anodization was carried out under constant voltage mode in 0.3M oxalic acid as an electrolyte. The hexagonally ordered arrays with a few $\mu\textrm{m}$ in size two-dimensional polycrystalline structure were obtained of which pore densities were 1.1${\times}$10$\^$10//$\textrm{cm}^2$.

Effect of Oxygen Partial Pressure on Tungsten-Alumina Bonding Behavior (텅스텐-알루미나 접합거동에 미치는 산소분압의 영향)

  • 박정현;이상진
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.755-762
    • /
    • 1990
  • The tungsten paste was printed on the surface of 92% alumina sheet which was made by type casting process. The printed tungsten was bonded on the Al2O3 by co-firing in reducing atmosphere. During the co-firing, the binder burn-out was easier in wet H2 atmosphere than in dry H2, which affected sintered density. In practically, the use of wet H2 above 100$0^{\circ}C$ was beneficial for density of alumina and bond strength. This phenomena occured more distinctly when atmosphere varied from dry H2 to wet H2 than varied dew point in wet H2. In wet H2, the improvement in bonding strength can be attributed to good glass migration into the metal layer due to inhibition of the tungsten particle growth, with increase of alumina density, at the temperatrue higher than 100$0^{\circ}C$.

  • PDF

a-Si:H Photodiode Using Alumina Thin Film Barrier

  • Hur Chang-Wu;Dimitrijev Sima
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.179-183
    • /
    • 2005
  • A photodiode capable of obtaining a sufficient photo/ dark current ratio at both forward bias state and reverse bias state is proposed. The photodiode includes a glass substrate, an aluminum film formed as a lower electrode over the glass substrate, an alumina film formed as an insulator barrier over the aluminum film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the alumina film, and a transparent conduction film formed as an upper electrode over the hydro-generated amorphous silicon film. A good quality alumina $(Al_2O_3)$ film is formed by oxidation of aluminum film using electrolyte solution of succinic acid. Alumina is used as a potential barrier between amorphous silicon and aluminum. It controls dark-current restriction. In case of photodiodes made by changing the formation condition of alumina, we can obtain a stable dark current $(\~10^{-12}A)$ in alumina thickness below $1000{\AA}$. At the reverse bias state of the negative voltage in ITO (Indium Tin Oxide), the photo current has substantially constant value of $5{\times}10^{-9}$ A at light scan of 100 1x. On the other hand, the photo/dark current ratios become higher at smaller thicknesses of the alumina film. Therefore, the alumina film is used as a thin insulator barrier, which is distinct from the conventional concept of forming the insulator barrier layer near the transparent conduction film. Also, the structure with the insulator thin barrier layer formed near the lower electrode, opposed to the ITO film, solves the interface problem of the ITO film because it provides an improved photo current/dark current ratio.

Formation of Asperites on the Plate-like Alumina Particles by Molten-salt Method (Molten-salt 방법에 의해 합성되는 판상형 알루미나 분말 표면에 돌기형성 거동)

  • Lee, Yoon Joo;Kim, Bo Yeon;Shin, Dong-Geun;Kim, Soo Ryong;Kwon, Woo Teck;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.560-565
    • /
    • 2014
  • Alumina nano-asperites were grown on plate-like alumina particles of which the surface had been covered with a capping agent to control the asperite formation sites on the particles. Utilized alumina source for asperite was nano sized ${\gamma}$-alumina, which was prepared by calcination of $Al(OH)_3$ at $600^{\circ}C$; silica suspension was used as the capping agent. Plate like alumina particles were covered by silica suspension and continuously heat-treated to $900^{\circ}C$ with nano sized ${\gamma}$-alumina, as the source material, under molten-salt atmosphere. Asperite growing site were controlled by the degree of coating of the capping agent; 10-20 nanosize of ${\theta}$-alumina were formed on the particle surface. On the other hand, alumina particles without capping agent were observed to undergo only step-like crystal growth during heat-treatment.