• Title/Summary/Keyword: Al(III) coagulants

Search Result 16, Processing Time 0.03 seconds

Comparison of Al(III) and Fe(III) Coagulants for Improving Coagulation Effectiveness in Water Treatment (정수처리 응집효율 개선을 위한 Al(III)염과 Fe(III)염 응집제의 비교)

  • Han, Seung woo;Kang, Lim seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.325-331
    • /
    • 2015
  • The experimental results of the characteristics of aluminum based and ferric based coagulants for the Nakdong River water showed that the main hydrolysis species contained in alum and $FeCl_3$ are monomeric species of 98% and 93.3%, respectively. The PACl of r=1.2 produced by the addition of base contained 31.2% of polymeric Al species and the PACl of r=2.2 contained 85.0% of polymeric Al species, as showing more polymeric Al species with increasing r value. Coagulation tests using Al(III) and Fe(III) salts coagulants for the Nakdong River water showed that the coagulation effectiveness of turbidity and organic matter was high in the order of $FeCl_3$ > PACl (r=2.2) > PACl (r=1.2) > alum. $FeCl_3$ has showed better flocculation efficiency than Al(III) salts coagulants. In addition, in case of Al(III) coagulants, the Al(III) coagulants of higher basicity, which contained more polymeric Al species, resulted in better coagulation efficiency for both turbidity and organic matter removed. The optimum pH range for all of the coagulants investigated was around pH 7.0 under the experimental pH range of 4.0~9.5. Especially, the highest basicity PACl (r=2.2) and $FeCl_3$ were considered as more appropriate coagulants for the removal of turbidity in the case of raw water exhibiting higher pH.

Characteristic of Al(III) Hydrosis Species at Rapid Mixing Condition (급속흔화조건에서 AI(III) 가수분해종의 분포특성)

  • Jung, Chul-Woo;Son, Jung-Gi;Shon, In-Shik;Kang, Lim-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.128-136
    • /
    • 2004
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by different Al(III) coagulants. When an Al(III) salt is added to water, monomers, polymers, or solid precipitates may form. Different Al(III) coagulants (alum and PACl) show to have different Al species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved Al(III) (monomer and polymer) increases, but for PACl, precipitates of $Al(OH)_{3(s)}$. increases rapidly. Also, for alum, higher mixing speed favoured Al(III) polymers formation over precipitates of $Al(OH)_{3(s)}$ but for PACl, higher mixing speed formed more precipitates of $Al(OH)_{3(s)}$. At A/D and sweep condition, both $Al(OH)_{3(s)}$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

A Study of Al(III) Hydrolysis Species Characterization under Various Coagulation Condition (응집 pH와 응집제 종류에 따른 Al(III)가수분해종 특성변화에 대한 연구)

  • Song, Yu-Kyung;Jung, Chul-Woo;Sohn, In-Shik
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.958-967
    • /
    • 2006
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by Al(III) coagulants and to evaluate the distribution of hydrolyzed Al(III) species by coagulant dose and coagulation pH. When an Al(III) salt was added to water, monomers, polymers and solid precipitates may form. Different Al(III) coagulants (alum and PSOM) show to have different Al(III) species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved AI(III) (monomer and polymer) increases, but for PSOM, precipitates of $Al(OH)_{3(S)}$ increases rapidly. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. The kinetic constants, Ka and Kb, derived from AI-ferron reaction. The kinetic constants followed very well the defined tendencies for coagulation condition. For pure water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. Also, for raw water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. At A/D(Adsorption and Destabilization) and sweep condition, both $Al(OH)_{3(S)}$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

Phosphorous Removal by Al(III) and Fe(III) Coagulants and Visualization of Flocs (Al(III), Fe(III)계 응집제의 인 제거 특성 및 플럭의 가시화)

  • Lee, Sang-Wha;Lee, Ku-Suk;Kang, Ik-Joong;Yoon, Hyon-Hee;Haam, Seung-Joo;Kwak, Jong-Woon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.74-80
    • /
    • 2005
  • The effective removal of turbid-inducing particulates and algae-inducing phosphorous was systematically investigated by the variation of physico-chemical parameters such as pH, alkalinity, and coagulant types. Al(III)-based and Fe(III)-based coagulants exhibited high removal efficiency of turbidity and phosphorous at optimal pH ranges of 7~9, in which zeta potential nearly approached to zero. The removal rate of turbidity rapidly increased with the increase of coagulant dosages, whereas the removal rate of phosphorous gradually increased due to an equivalent reaction of phosphorous with metallic ions. The generation of flocs during coagulation was visualized by high speed camera (Motion Scope 2000, Redlake Co.), and the images of singular flocs were captured by optical microscope. The flocs generated by Fe(III)-based coagulant was more compact than those induced by Al(III)-based coagulant, and the settlabiltiy of Fe(III)-induced flocs was superior to that of Al(III)-induced flocs.

Characterization of Coagulation on Synthetic Polymerization Al(III) Inorganic Coagulants for Water Treatment (상수처리용 합성 무기고분자 Al(III)계 응집제의 응집특성)

  • Han Seung-Woo;Jung Chul-Woo;Kang Lim-Seok
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.717-724
    • /
    • 1999
  • This experiment was performed on three parts with prepared coagulants. (1) The characterization of coagulation for PACI coagulants. (2) Comparison of the characterization of coagulation with PAS and PACI coagulants. And (3) Comparison of the characterization of coagulation for the addition of calcium with PACI. Coagulation experiments were conducted with several dosages and pH for each coagulants. For the characterization of coagulation with PACI coagulants, coagulation of Nakdong river waters with three PACls (r=2.0, 2.2, 2.35) showed that the effectiveness of the three coagulants can be considered as r=2.2 > 2.0 > 2.35 which are also the order of higher polymeric aluminum contents. For the comparison of the characterization of coagulation for PAS and PACI coagulants, PAS (r=0.75) coagulants was more effective than other coagulant for the removal of organic matters by sweep floc mechanism with $A;(OH)_{3(S)}$. For comparison of the characterization of coagulation for the addition of calcium with PACI, the presence of divalent cation like $Ca^{2+}$ was supposed to influence the complex formation of organic anions. From the result of test on coagulation at various pH ranges, the PACI was least affected by the coagulation pH, and the addition of calcium to PACI was very effective for the removal of turbidity and organic materials over broader pH range (pH 4-9).

  • PDF

Effects of Characterization of Polymeric Al(III) Coagulants on Coagulation of Surface Water (고분자성 Al(III) 응집제의 특성이 상수원수의 응집특성에 미치는 영향)

  • Lee, Sun Gi;Han, Seung Woo;Kang, Lim Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.99-105
    • /
    • 1998
  • This research explored the feasibility of preparing and utilizing a preformed polymeric solution of Al(III) for coagulation in water treatment. Slow base(NaOH) injection into supersaturated aluminum chloride solutions did produce high yields of the type of Al polymers useful to water treatment applications. PACl's characteristic analysis showed that the quantity of polymeric Al produced at value of $r(OH_{added}/Al)=2.2$ was 83% of the total aluminum in solution, as showing maximum contents and precipitate was dramatically increased when r was increased above 2.35. And PACl was stable during sitoring period so aging effect was negligible. Results of the coagulation of Nakdong river waters with three PACls showed that the effectiveness of the three coagulants can be considered as r = 2.2 > r = 2.0 > r = 2.35 which are also the order of higher polymeric aluminum contents. Coagulation results for synthetic water exhibited optimum dose of 0.25mM Al, for three PACls, but above optimum dose, r = 2.0 and 2.2 PACl impaired the coagulation and sedimentation of turbidity and humic acid because of the restabilization of particulate. The effect of pH for on coagulation of Nak Dong River water showed that it had much effect turbidity and TOC removal, especially near pH 7. But pH effect was little for turbidity and TOC removal when r = 2.35 PACl was used for coagulation, that PACl had much more precipitates content.

  • PDF

Optimization of chemical precipitation for phosphate removal from domestic wastewater (생활하수내 인 제거를 위한 화학적 침전의 최적화)

  • Lee, Sunkyung;Park, Munsik;Yeon, Seungjae;Park, Donghee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.663-671
    • /
    • 2016
  • Coagulation/precipitation process has been widely used for the removal of phosphate within domestic wastewater. Although Fe and Al are typical coagulants used for phosphate removal, these have some shortages such as color problem and low sedimentation velocity. In this study, both Fe and Al were used to overcome the shortages caused by using single one, and anionic polymer coagulant was additionally used to enhance sedimentation velocity of the precipitate formed. Batch experiments using a jar test were conducted with real wastewater, which was an effluent of the second sedimentation tank in domestic wastewater treatment plant. Response Surface Methodology was used to examine the responsibility of each parameter on phosphate removal as well as to optimize the dosage of the three coagulants. Economic analysis was also done on the basis of selling prices of the coagulants in the field. Phosphate removal efficiency of Fe(III) was 30% higher than those of Fe(II). Considering chemical price, optimum dosage for achieving residual phosphate concentration below 0.2 mg/L were determined to be 18.14 mg/L of Fe(III), 2.60 mg/L of Al, and 1.64 mg/L of polymer coagulant.

Effects of Dual-Coagulant Performance (이중응집이 응집공정에 미치는 영향)

  • Kim, Hee-Geun;Moon, Byung-Hyun;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.92-97
    • /
    • 2005
  • This research is to investigate the effect of the dual coagulant using inorganic coagulants($AICl3{\cdot}6H2O$) and polymer on the coagulant process. Jar-test was conducted by using Kaolin injected raw water. PDA(Photometric Dispersion Analyzer) equipment in order to analyze the size of the particles and the characteristics of the shapes. The change in the rate of sample ores' residual deposited after coagulants were also compared. According to the result derived from this experiment, the concentration of inorganic coagulant reduced 50% and the residual was lower by using dual coagulants compared to using single coagulant. However the dual coagulant required sufficient mixing time, and affected particle characteristics, with the effect of the injection order of coagulants, the simultaneous injection of inorganic coagulant and polymer showed the most effective in the particle removal.

Characteristic of Al(III) Hydrolysis Specie Distribution on Coagulation Process (응집공정에서 발생하는 알루미늄 가수분해종 분포특성)

  • Song, Yu-Kyung;Jung, Chul-Woo;Hwangbo, Bong-Hyung;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.547-554
    • /
    • 2006
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by Al(III) coagulants and to evaluate the distribution of hydrolyzed Al(III) species by coagulant dose and coagulation pH. When an Al(III) salt was added to water, monomeric Al(III), polymeric Al(III), precipitate Al(III) was formed by Al(III) hydrolysis. The method of hydrolyzed Al(III) species characterization analysis was based on timed spectrophotometer with ferron as a color developing reagent. The hydrolytic species were divided into monomer, polymer, precipitate from the reaction kinetics. And then, the color intensity for monomeric Al(III) was read 3 min after mixing. With standard Al solution containing monomeric Al(III) only, the Al-ferron color intensity slightly increased with until about 3 min. During the rapid mixing period, for purewater, formation of dissolved Al(III) (monomer and polymer) was similar to rapid mixing condition, but for raw water, the species of Al(III) hydrolysis showed different result. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. The kinetic constants, Ka and Kb, derived from Al-ferron reaction. The kinetic constants followed very well the defined tendencies for coagulation condition. For pure water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. Also, for raw water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values.

Evaluation of Coagulation Characteristics of Fe(III) and Al(III) Coagulant using On-line Monitoring Technique (On-line 모니터링 기법을 이용한 Al염계와 Fe염계 응집제의 응집특성 평가)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Kim, Sang-Goo;Seo, Chang-Dong;Hwang, Young-Do
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.715-722
    • /
    • 2014
  • Effects of coagulation types on flocculation were investigated by using a photometric dispersion analyzer (PDA) as an on-line monitoring technique in this study. Nakdong River water were used and alum and ferric chloride were used as coagulants. The aim of this study is to compare the coagulation characteristics of alum and ferric chloride by a photometric dispersion analyzer (PDA). Floc growing rates ($R_v$) in three different water temperatures ($4^{\circ}C$, $16^{\circ}C$ and $30^{\circ}C$) and coagulants doses (0.15 mM, 0.20 mM and 0.25 mM as Al, Fe) were measured. The floc growing rate ($R_v$) by alum was 1.8~2.8 times higher than that of ferric chloride during rapid mixing period, however, for 0.15 mM~0.25 mM coagulant doses the floc growing rate ($R_v$) by ferric chloride was 1.1~2.3 times higher than that of alum in the slow mixing period at $16^{\circ}C$ water temperature. Reasonable coagulant doses of alum and ferric chloride for turbidity removal were 0.1 mM (as Al) and 0.2 mM (as Fe), respectively, and the removal efficiency of those coagulant doses showed 94% for alum and 97% for ferric chloride. The appropriate coagulant dose of alum and ferric chloride for removing dissolved organic carbon (DOC) showed about 0.3 mM (as Al, Fe) and at this dosage, DOC removal efficiencies were 36% and 44%, and ferric chloride was superior to the alum for removal of the DOC in water.