• Title/Summary/Keyword: Al$_2$O$_3$/Al composite

Search Result 566, Processing Time 0.027 seconds

A STUDY ON THE BONDING OF ESTHETIC RESTORATIVE MATERIALS TO BLEACHED BOVINE ENAMEL (치아표백후의 법랑질에 대한 심미성 수복재의 결합강도 변화에 관한 연구)

  • Rew, Kyung-Hee;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.183-196
    • /
    • 1998
  • The purpose of this study was to determine the effect of bleaching technique on the shear bond strength of esthetic restorative materials to bovine enamel. The bleaching agent was used 35% $H_2O_2$(Hi-Lite, Shofu, U.S.A.). Experimental groups were divided into two divisions as group A and B. Experimental A groups for the effect of number of bleaching were as follows ; Group Al : no bleaching Group A2 : bleaching 1 time ( for 5 minutes ) Group A3 : bleaching 3 times ( each for 5 minutes ) Group A4 : bleaching 6 times ( each for 5 minutes ) Group A5 : bleaching 9 times ( each for 5 minutes ) Experimental B groups for the effect of storage period in artificial saliva were as follows ; Group B1 : not stored in artificial saliva after bleaching Group B2 : stored in artificial saliva for 1 day after bleaching Group B3 : stored in artificial saliva for 1 week after bleaching Group B4 : stored in artificial saliva for 2 weeks after bleaching Group B5 : stored in artificial saliva for 4 weeks after bleaching Composite resin and glass ionomer cement were bonded to all specimens, and the shear bond strength between enamel and r~storative material were measured in Instron Universal Testing Machine(Instron, 4467, U.S.A,), Additionally, the bleached enamel specimens were examed after etching with 37.4% $H_3PO_4$ for 1 min under SEM(S-2300, Hitachi Co., Japan) to observe the effect of bleaching procedure on enamel surface morphology. The result were as follows ; 1. In SEM findings, bleached bovine enamel was found to be superficially rough. 2. In bleached bovine enamel, the effect of acid etching was reduced with the increase of number of bleaching. 3. The mean shear bond strength of composite resin and glass ionomer cement to bleached enamel surface tended to be lower than those to non-bleached enamel surface. 4. With the increase of number of bleaching, the shear bond strength of composite resin and glass ionomer cement to bleached enamel were progressively decreased. 5. Increasing the, storage period in artificial saliva after bleaching, the shear bond strength of composite resin and glass ionomer cement to bleached enamel were progressively increased. 6. The mean shear bond strength of glass ionomer cement to bleached bovine enamel tended to be clearly lower than that of composite resin.

  • PDF

Preparation and Properties of Zirconia-based Electrolytes from m-Zirconia and Yag Sol (m-지르코니아와 Yag 졸로부터 지르코니아계 전해질 제조 및 물성)

  • Kang, Keon-Taek;Han, Kyoung R.;Nam, Suk-Woo;Kim, Chang-Sam;Lee, Young-Soo;Yoo, Han-Ill
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.834-838
    • /
    • 2001
  • Attempts were made to improve mechanical properties of zirconia-based electrolyte by preparing yttria-stabilized cubic zirconia/alumina composite. It was performed by precipitating Yag precursor in aqueous m-zirconia slurry. The powder was separated and then followed by heat treatment with expecting yttria to react with m-$ZrO_2$ to give yttria stabilized zirconia and alumina to be dispersed homogeneously. When 17.8wt% Yag(6.3mol% $Y_2O_3$) was used, fracture toughness and strength were substantially improved from 1.44MPa${\cdot}m^{1/2}$ and 270Mpa for YZ8Y to 3.62MPa${\cdot}m^{1/2}$ and 447MPa respectively, but electrical conductivity at $^{\circ}$C in air was decreased from 0.126 to 0.057${\Omega}^{-1}cm^{-1}$. It seemed due to the presence of small amount of tetragonal zirconia. But when 21.58wt% Yag(8.0mol% $Y_2O_3$) was added, fracture toughness of 2.93MPa${\cdot}m^{1/2}$ and flexural strength of 388MPa were obtained with electrical conductivity of ${\Omega}^{-1}cm^{-1}$.

  • PDF

Ceramic-Ceramic Wear of Zirconia/Alumina Composites for the Application of Total Hip Replacement (인공 고관절 골두용 세라믹 복합재료에 대한 세라믹-세라믹 접촉 마멸 특성 분석)

  • Lee Kwon-Yong;Kim Hwan;Kim Dae-Jun;Lee Myong-Hyon;Seo Won-Seon
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.216-220
    • /
    • 2005
  • The sliding wear behaviors of three different compositions of novel low temperature degradation-free zirconia/alumina (LTD-free Z/A) composites were examined in a ceramic-ceramic contact pair. The wear tests were performed by using a pin-on-disk type wear tester in a linear reciprocal sliding motion with a line contact in both dry and bovine serum lubricated conditions at room temperature. From the results of dry sliding wear tests, Z/A#1((5.3Y, 4.6Nb)-TZP/80 $vol\%Al_2O_3$) showed the best wear resistance among three kinds of LTD-free Z/A composites. For the bovine serum lubricated sliding wear tests, wear was too little to be measured for all kinds of Z/A composites. These novel LTD-free Z/A composites having excellent wear resistance demonstrated a potential as the alternative materials for the ceramic-ceramic contact pairs of femoral head and acetabular liner in total hip replacement.

Numerical study of the cyclic behavior of steel plate shear wall systems (SPSWs) with differently shaped openings

  • Ali, Mustafa M.;Osman, S.A.;Husam, O.A.;Al-Zand, Ahmed W.
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.361-373
    • /
    • 2018
  • This paper presents the development of finite element (FE) models to simulate the behavior of diagonally stiffened steel plate shear wall systems (SPSWs) with differently shaped openings subjected to a cyclic load. This walling system has the potential to be used for shear elements that resist lateral loads in steel-framed buildings. A number of $\text\tiny{^1/_2}$-scale one-story buildings that were un-stiffened, stiffened and stiffened with opening SPSWs are modeled and simulated using the finite element method based on experimental data from previous research. After validating the finite element (FE) models, the effects of infill plate thickness on the cyclic behavior of steel shear walls are investigated. Furthermore, triple diagonal stiffeners are added to the steel infill plates of the SPSWs, and the effects are studied. Moreover, the effects of a number of differently shaped openings applied to the infill plate are studied. The results indicate that the bearing capacity and shear resistance are affected positively by increasing the infill plate thickness and by adding triple diagonal stiffeners. In addition, the cyclic behavior of SPSWs is improved, even with an opening in the SPSWs.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

Analysis of Apparent Fracture Toughness of a Thick-Walled Cylinder with an FGM Coating at the Inner Surface Containing a Radial Edge Crack (반경방향의 모서리 균열을 갖고 내면이 경사기능재료(FGM)로 코팅된 두꺼운 실린더의 겉보기 파괴인성해석)

  • Afsar, A.M.;Rasel, S.M.;Song, J.I.
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • This study analyzes the apparent fracture toughness of a thick-walled cylinder with a functionally graded material (FGM) coating at the inner surface of the cylinder. The cylinder is assumed to have a single radial edge crack emanating from its inner surface. The crack surfaces and the inner surface of the cylinder are subjected to an internal pressure. The incompatible eigenstrain developed in the cylinder due to nonuniform coefficient of thermal expansion as a result of cooling from sintering temperature is taken into account. Based on a method of evaluating stress intensity factor introduced in our previous study, an approach is developed to calculate apparent fracture toughness. The approach is demonstrated for a cylinder with a TiC/$Al_{2}O_{3}$ FGM coating and some numerical results of apparent fracture toughness are presented graphically. The effects of material distribution profile, cylinder wall thickness, application temperature, and coating thickness on the apparent fracture toughness are investigated in details. It is found that all of these factors play an important role in controlling the apparent fracture toughness of the cylinder.

Evaluation of shear-bond strength between different self-adhesive resin cements with phosphate monomer and zirconia ceramic before and after thermocycling (인산염계 기능성 단량체가 첨가된 수종의 자가 접착 레진시멘트와 지르코니아 세라믹 사이 열순환 전후 전단결합강도 비교)

  • Lee, Ji-Hun;Kim, Min-Kyung;Lee, Jung-Jin;Ahn, Seung-Geun;Park, Ju-Mi;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.4
    • /
    • pp.318-324
    • /
    • 2015
  • Purpose: This study compared shear bond strengths of five self-adhesive cements with phosphate monomer to zirconium oxide ceramic with and without airborn particle abrasion. Materials and methods: One hundred zirconia samples were air-abraded ($50{\mu}mAl_2O_3$). One hundred composite resin cylinders were fabricated. Composite cylinders were bonded to the zirconia samples with either Permacem 2.0 (P), $Clearfil^{TM}$ SA Luting (C), $Multilink^{(R)}$ Speed (M), $RelyX^{TM}$ U200 Automix (R), G-Cem $LinkAce^{TM}$ (G). All bonded specimens were stored in distilled water ($37^{\circ}C$) for 24 h and half of them were additionally aged by thermocycling ($5^{\circ}C$, $55^{\circ}C$, 5,000 times). The bonded specimens were loaded in shear force until fracture (1 mm/min) by using Universal Testing Machine (Model 4201, Instron Co, Canton, MA, USA). The failure sites were inspected under field-emission scanning electron microscopy. The data was analyzed with ANOVA, Tukey HSD post-hoc test and paired samples t-test ($\alpha$=.05). Results: Before and after thermocycling, $Multilink^{(R)}$ Speed (M) revealed higher shear-bond strength than the other cements. G-Cem $LinkAce^{TM}$ (G) showed significantly lower bond strengths after thermocycling than before treatment (P<.05), but the other groups were not significantly different (P>.05). Conclusion: Most self-adhesive cements with phosphate monomer showed high shear bond strength with zirconia ceramic and weren't influenced by thermocycling, so they seem to valuable to zirconia ceramic bonding.

Effects of Sintering Temperature on Fabrication Properties of LPS-SiC Ceramics (LPS-SiC 세라믹스 제조특성에 미치는 소결온도의 영향)

  • Park, Yi-Hyun;Jung, Hun-Chae;Kim, Dong-Hyun;Yoon, Han-Ki;Kohyam, Akira
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.204-209
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, $SiC_f/SiC$ composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing fiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of $SiC_f/SiC$ composites by hot pressing method. In the present work, Monolithic LPS-SiC was fabricated by hot pressing method in Ar atmosphere at 1760 $^{\circ}C$, 1780 $^{\circ}C$, 1800 $^{\circ}C$ and 1820 $^{\circ}C$ under 20 MPa using $Al_2O_3-Y_2O_3$ system as sintering additives in order to low sintering temperature. The starting powder was high purity ${\beta}-SiC$ nano-powder with an average particle size of 30 nm. Monolithic LPS-SiC was evaluated in terms of sintering density, micro-structure, flexural strength, elastic modulus and so on. Sintered density, flexural strength and elastic modulus of fabricated LPS-SiC increased with increasing the sintering temperature. In the micro-structure of this specimen, it was found that grain of sintered body was grown from 30 nm to 200 nm.

  • PDF

Petrology of the Volcanic Rocks in Geoje Island, South Korea (거제도 화산암의 암석학적 연구)

  • 윤성효;이준동;이상원;고정선;서윤지
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 1997
  • Andesitic pyroclastics and lava flows are deposited as a part of composite volcanoes by Cretaceous volcanic activity in Geojae Island, off the coast of Korea. The andesitic pyroclastics are composed of tuff breccia and lapilli tuff minor intercalated tuff. Lava flows are divided into dense and porphyritic andesite containing phenocrysts of plagioclase, pyroxene, and/or hornblende. The andesitic rocks represent charactersitcs of carc-alkaline BAR association with basalt, basaltic andesite, andesite, and dacite to rhyolite. Major element variations of the volcanic rocks show that $Al_2O_3$, total FeO, CaO, MgO and $TiO_2$ decrease with increasing $SiO_2$ but $K_2O$ and total alkalis increase, and represent differntiation trend of calc-alkaline rock series. In spider diagram, contents of Sr, K, Rb, Ba, and Th are relatively high, but contents of Nb, P, Ti and Cr are low. These petrochemcial characteristics are similar to those of rocks from island arc or continental margein related to plate subduction. Chondrite-normalized REE patterns of volcanic rocks are paralle to subparallel, with LREE enriched than HREE, and show gradual increase of negative Eu anomaly from basalt to dacite and rhyolite, suggesting comagmatic fractional crystallization with minor effects of assimilation and magma mixing. Andesitic rocks are assumed medium-K orogenic andesites that formed in the tectomagmatic environment of subduction zone under normal continental margin arc.

  • PDF

A STUDY OF SCREW LOOSENING AFTER DYNAMIC CONTINOUS FATIGUE TEST OF SEVERAL ABUTMENT SCREW (수종 임플랜트 지대주나사의 반복하중 후 나사풀림에 관한 연구)

  • Kim Jin-Man;Han Jung-Suk;Lee Sun-Hyung;Yang Jae-Ho;Lee Jae-Bong;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.519-531
    • /
    • 2003
  • Statement of problem : Chronic implant screw loosening remains a problem in restorative practices. Some implant manufactureres have introduced abutment screws with treated material, surfaces and macrostructures in an effort to reduce potential loosening. Purpose : This study evaluated the materials and loading cycles on detorque value after dynamic continous fatigue test in the sinulated conditions of posterior single restoration. Material and method : Fourteen of each of the following abutment screws - titanium alloy, gold alloy, gold-tite, and titanium alloy modified - were used in test. SEM is used to verify macrostructures of each screws. $ZrO_2/Al_2O_3$ composite abutment was tightened on $4{\times}10.0mm$ titanium external implant at 30 Ncm. Cyclic loading machine delivered dynamic loading forces between 20 and 320N for 100,000, 200,000, 300,000, 500,000, and 1,000,000 cycles at frequencies 14Hz. Torque and detorque value after loading was measured. Results : All measued screws had different screw length and thread form. Titanium modified screw had greater detorque value than others before and after cyclic loadings(p<0.05). All abutment screws had no significant change in mean percentage of detorque value after loading to initial value after less than 500.000 cyclic loadings, but significant lower value after 1,000,000 cycles(p<0.05). Conclusion : Within limintations of this study all abutment screws may be loosend after about 1 year use. Annual check-up is nessasary to prevent screw loosening.