• Title/Summary/Keyword: Akt/mTOR pathway

Search Result 78, Processing Time 0.035 seconds

Extract from Artemisia annua Linné Induces Apoptosis through the Mitochondrial Signaling Pathway in HepG2 Cells (HepG2 간암세포에서 미토콘드리아 경로를 통한 개똥쑥 추출물의 Apoptosis 유도 효과)

  • Kim, Bo Min;Kim, Guen Tae;Kim, Eun Ji;Lim, Eun Gyeong;Kim, Sang-Yong;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1708-1716
    • /
    • 2016
  • The Akt/mammalian target of the rapamycin (mTOR) pathway is activated in the majority of human cancers. Activation of the Akt/mTOR pathway confers resistance to many types of cancer therapy. In this study, we evaluated the apoptotic effect of ethanol extract of Artemisia annua L. through down-regulation of Akt signal pathways and the mitochondrial pathway in hepato-carcinoma cells (HepG2). A. annua extract is known as a medicinal herb that is effective against cancer. We evaluated anti-proliferative activity by MTT-based viability assay and apoptotic effect by Annexin-V/PI staining, mitochondrial membrane potential (MMP), and caspase-3/7 activity as determined by flow cytometry. A. annua treatment led to loss of MMP, resulting in cytochrome c-inducible activation of caspase-3/7. Treatment with A. annua extract reduced activities of Akt/mTOR/anti-apoptotic proteins (such as Bcl-2 and $Bcl-X_L$), leading to increased activation of tumor suppressor p53 and pro-apoptotic proteins (such as Bax and Bak). We applied LY294002 (inhibitor of Akt) and rapamycin (inhibitor of mTOR) to determine the relationship between signal transduction of proteins associated with apoptosis. LY294002 and rapamycin significantly reduced cell viability and increased apoptosis. These results indicate that Bcl-2 and caspase-3 are key regulators in A. annua extract-induced apoptosis in HepG2 cells and are controlled through the Akt/mTOR signaling pathway.

Inhibitors of AKT Signaling Pathway and their Application

  • WONG, Chin Piow
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.33-33
    • /
    • 2019
  • The AKT signaling pathway is a highly regulated cell signaling system that forms a network with other cell signaling pathways. Hence, the AKT signaling pathway mediates several important cellular functions that include cell survival, proliferation, cell migration, and et cetera. Irregularities that led overactive AKT signaling have been linked to many diseases such as cancer and metabolic-associated diseases. Hence, modulating the overactive AKT signaling pathway via inhibitor is a tantalizing prospect for treatment of cancer and metabolic-associated diseases. Two inhibitors of the AKT signaling pathway will be presented in this symposium: 1) Bisleuconothine A (BisA), a bisindole alkaloid that inhibit autophagy and 2) Ceramicine B (CerB), a limonoid that inhibit adipogenesis. The first topic is on a bisindole alkaloid, BisA and its mechanism in inducing autophagosome formation in lung cancer cell line, A549.(1) Since most autophagy inducing agents generally induce apoptosis, we found that BisA does not induce apoptosis even in high dose. BisA up-regulation of LC3 lipidation is achieved through mTOR inactivation. The phosphorylation of PRAS40, a mTOR repressor was suppressed by BisA. This observation suggested that BisA inactivates mTOR via suppression of PRAS40 phosphorylation. Interestingly, the phosphorylation of AKT, an upstream regulator of PRAS40 phosphorylation was also down-regulated by BisA. These findings suggested that Bis-A induces autophagosomes formation by interfering with the AKT-mTOR signaling pathway. The second topic is on CerB and its mechanism in inhibiting adipogenesis in preadipocytes cell line, MC3T3-G2/PA6.(2,3) CerB inhibits the phosphorylation of protein kinase B (AKT) at the Thr308 position but not the Ser473. Consequently, the phosphorylation of FOXO3 which is located downstream of AKT is also inhibited. Considering that FOXO3 is an important regulator of PPARγ which is a key factor in adipogenesis, CerB may inhibit adipogenesis via the AKT-FOXO3 signaling pathway. Taken together, both BisA and CerB highlighted the potential of AKT signaling pathway modulation as an approach to induce autophagy and inhibit the formation of fat cells, respectively.

  • PDF

20(S)-Ginsenoside Rh2 displays efficacy against T-cell acute lymphoblastic leukemia through the PI3K/Akt/mTOR signal pathway

  • Xia, Ting;Zhang, Jin;Zhou, Chuanxin;Li, Yu;Duan, Wenhui;Zhang, Bo;Wang, Min;Fang, Jianpei
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.725-737
    • /
    • 2020
  • Background: T-cell acute lymphoblastic leukemia (T-ALL) is a kind of aggressive hematological cancer, and the PI3K/Akt/mTOR signaling pathway is activated in most patients with T-ALL and responsible for poor prognosis. 20(S)-Ginsenoside Rh2 (20(S)-GRh2) is a major active compound extracted from ginseng, which exhibits anti-cancer effects. However, the underlying anticancer mechanisms of 20(S)-GRh2 targeting the PI3K/Akt/mTOR pathway in T-ALL have not been explored. Methods: Cell growth and cell cycle were determined to investigate the effect of 20(S)-GRh2 on ALL cells. PI3K/Akt/mTOR pathway-related proteins were detected in 20(S)-GRh2-treated Jurkat cells by immunoblotting. Antitumor effect of 20(S)-GRh2 against T-ALL was investigated in xenograft mice. The mechanisms of 20(S)-GRh2 against T-ALL were examined by cell proliferation, apoptosis, and autophagy. Results: In the present study, the results showed that 20(S)-GRh2 decreased cell growth and arrested cell cycle at the G1 phase in ALL cells. 20(S)-GRh2 induced apoptosis through enhancing reactive oxygen species generation and upregulating apoptosis-related proteins. 20(S)-GRh2 significantly elevated the levels of pEGFP-LC3 and autophagy-related proteins in Jurkat cells. Furthermore, the PI3K/Akt/mTOR signaling pathway was effectively blocked by 20(S)-GRh2. 20(S)-GRh2 suppressed cell proliferation and promoted apoptosis and autophagy by suppressing the PI3K/Akt/mTOR pathway in Jurkat cells. Finally, 20(S)-GRh2 alleviated symptoms of leukemia and reduced the number of white blood cells and CD3 staining in the spleen of xenograft mice, indicating antitumor effects against T-ALL in vivo. Conclusion: These findings indicate that 20(S)-GRh2 exhibits beneficial effects against T-ALL through the PI3K/Akt/mTOR pathway and could be a natural product of novel target for T-ALL therapy.

Genetic Variants in the PI3K/PTEN/AKT/mTOR Pathway Predict Platinum-based Chemotherapy Response of Advanced Non-small Cell Lung Cancers in a Chinese Population

  • Xu, Jia-Li;Wang, Zhen-Wu;Hu, Ling-Min;Yin, Zhi-Qiang;Huang, Ming-De;Hu, Zhi-Bin;Shen, Hong-Bing;Shu, Yong-Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2157-2162
    • /
    • 2012
  • Objective: The PI3K/PTEN/AKT/mTOR signaling pathway has been implicated in resistance to cisplatin. In the current study, we determined whether common genetic variations in this pathway are associated with platinum-based chemotherapy response and clinical outcome in advanced non-small cell lung cancer (NSCLC) patients. Methods: Seven common single nucleotide polymorphisms (SNPs) in core genes of this pathway were genotyped in 199 patients and analyzed for associations with chemotherapy response, progression-free survival (PFS) and overall survival (OS). Results: Logistic regression analysis revealed an association between AKT1 rs2494752 and response to treatment. Patients carrying heterozygous AG had an increased risk of disease progression after two cycles of platinum-based chemotherapy compared to those with AA genotype (Adjusted odds ratio (OR)=2.18, 95% confidence interval (CI): 1.00-4.77, which remained significant in the stratified analyses). However, log-rank test and cox regression detected no association between these polymorphisms in the PI3K pathway genes and survival in advanced NSCLC patients. Conclusions: Our findings suggest that genetic variants in the PI3K/PTEN/AKT/mTOR pathway may predict platinum-based chemotherapy response in advanced NSCLC patients in a Chinese population.

Hesperidin Inhibits Vascular Formation by Blocking the AKT/mTOR Signaling Pathways

  • Kim, Gi Dae
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.221-229
    • /
    • 2015
  • Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and $100{\mu}M$) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial-like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs (P<0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways.

Potential Targets for Prevention of Colorectal Cancer: a Focus on PI3K/Akt/mTOR and Wnt Pathways

  • Pandurangan, Ashok Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2201-2205
    • /
    • 2013
  • Colorectal cancer (CRC) is one of the most common cancers in many parts of the world. Its development is a multi-step process involving three distinct stages, initiation that alters the molecular message of a normal cell, followed by promotion and progression that ultimately generates a phenotypically altered transformed malignant cell. Reports have suggested an association of the phosphoinositide-3-kinase (PI3K)/Akt pathway with colon tumorigenesis. Activation of Akt signaling and impaired expression of phosphatase and tensin homolog (PTEN) (a negative regulator of Akt) has been reported in 60-70% of human colon cancers and inhibitors of PI3K/Akt signaling have been suggested as potential therapeutic agents. Around 80% of human colon tumors possess mutations in the APC gene and half of the remainder feature ${\beta}$-catenin gene mutations which affect downstream signaling of the PI3K/Akt pathway. In recent years, there has been a great focus in targeting these signaling pathways, with natural and synthetic drugs reducing the tumor burden in different experiment models. In this review we survey the role of PI3K/Akt/mTOR and Wnt signaling in CRC.

The Effects of Glucagon-like Peptide-2 on the Tight Junction and Barrier Function in IPEC-J2 Cells through Phosphatidylinositol 3-kinase-Protein Kinase B-Mammalian Target of Rapamycin Signaling Pathway

  • Yu, Changsong;Jia, Gang;Deng, Qiuhong;Zhao, Hua;Chen, Xiaoling;Liu, Guangmang;Wang, Kangning
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.731-738
    • /
    • 2016
  • Glucagon-like peptide-2 (GLP-2) is important for intestinal barrier function and regulation of tight junction (TJ) proteins, but the intracellular mechanisms of action remain undefined. The purpose of this research was to determine the protective effect of GLP-2 mediated TJ and transepithelial electrical resistance (TER) in lipopolysaccharide (LPS) stressed IPEC-J2 cells and to test the hypothesis that GLP-2 regulate TJ and TER through the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway in IPEC-J2 cells. Wortmannin and LY294002 are specific inhibitors of PI3K. The results showed that $100{\mu}g/mL$ LPS stress decreased TER and TJ proteins occludin, claudin-1 and zonula occludens protein 1 (ZO-1) mRNA, proteins expressions (p<0.01) respectively. GLP-2 (100 nmol/L) promote TER and TJ proteins occludin, claudin-1, and zo-1 mRNA, proteins expressions in LPS stressed and normal IPEC-J2 cells (p<0.01) respectively. In normal cells, both wortmannin and LY294002, PI3K inhibitors, prevented the mRNA and protein expressions of Akt and mTOR increase induced by GLP-2 (p<0.01) following with the significant decreasing of occludin, claudin-1, ZO-1 mRNA and proteins expressions and TER (p<0.01). In conclusion, these results indicated that GLP-2 can promote TJ's expression and TER in LPS stressed and normal IPEC-J2 cells and GLP-2 could regulate TJ and TER through the PI3K/Akt/mTOR pathway.

Cell Cycle Arrest of Extract from Artemisia annua Linné. Via Akt-mTOR Signaling Pathway in HCT116 Colon Cancer Cells (HCT116 대장암세포에서 Akt-mTOR 신호경로를 통한 개똥쑥 추출물 (AAE)의 세포주기 억제 효과)

  • Kim, Bo Min;Kim, Guen Tae;Lim, Eun Gyeong;Kim, Eun Ji;Kim, Sang Yong;Ha, Sung Ho;Kim, Young Min
    • KSBB Journal
    • /
    • v.30 no.5
    • /
    • pp.223-229
    • /
    • 2015
  • In this study, extract from Artemisia annua in L. (AAE) is known as a medicinal herb that is effective against cancer. The cell cycle is regulated by the activation of cyclin-dependent kinase (CDK)/cyclin complex. We will focus on regulation of CDK2 by cyclin E. cyclin E is associated with CDK2 to regulate progression from G1 into S phase. Akt is known to play an important role in cell proliferation and cell survival. Activation of Akt increases mTOR activity that promotes cell proliferation and cancer growth. In this study, we investigated that AAE-induced cell cycle arrest at G1/S phase in HCT116 colon cancer. Treatment of AAE shows that reduced activation of Akt decreases mTOR/Mdm2 activity and then leads to increase the activation of p53. The active p53 promotes activation of p21. p21 induces inactivation of CDK2/cyclin E complex and occurs cell cycle arrest at G1/S phase. We treated LY294002 (Akt inhibitor) and Rapamycin (mTOR inhibitor) to know the relationship between the signal transduction of proteins associated with cell cycle arrest. These results suggest that AAE induces cell cycle arrest at G1/S phase by Akt/mTOR pathway in HCT116 colon cancer cell.

Combination Therapy with a PI3K/mTOR Dual Inhibitor and Chloroquine Enhances Synergistic Apoptotic Cell Death in Epstein-Barr Virus-Infected Gastric Cancer Cells

  • Kim, Mi-Young;Kruger, Annie J.;Jeong, Ju-Yeon;Kim, Jaehee;Shin, Phil kyung;Kim, Sun Young;Cho, Joo Young;Hahm, Ki Baik;Hong, Sung Pyo
    • Molecules and Cells
    • /
    • v.42 no.6
    • /
    • pp.448-459
    • /
    • 2019
  • The phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway is a promising target for gastric cancer (GC) treatment; however the efficacy of PI3K/mTOR dual inhibitors in GC has not yet been maximized. Additionally, the effect of autophagy regulation by PI3K/mTOR dual inhibitors has not been clearly elucidated in GC treatment. We aimed to show that our newly developed PI3K/mTOR dual inhibitor, CMG002, when combined with an autophagy inhibitor, chloroquine (CQ), potently induces effective cancer cell death in Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) cells, where both the PI3K/AKT/mTOR and autophagy pathways play important roles in disease pathogenesis. EBV- and mock-infected AGS and NUGC3 GC cell lines were treated with CMG002 +/- CQ. PI3K/AKT/mTOR signaling pathway mediators, cellular apoptosis and autophagy markers were confirmed by Western blot assay. Cell viability was assessed using the Cell Counting Kit-8 (CCK-8) assay. CMG002 effectively blocked the PI3K/AKT/mTOR pathway by markedly decreasing phosphorylation of AKT and its downstream mediator S6. CMG002 induced G0/G1 cell cycle arrest and enhanced apoptotic cell death in AGS and NUGC3 cells, particularly EBV-infected cells compared with mock-infected cells, as confirmed by flow cytometric analyses and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assays. The combination of CMG002 plus CQ synergistically increased apoptotic cell death in EBV-infected GC cell lines when compared with CMG002 alone (P < 0.05). Our results suggest that the new PI3K/mTOR dual inhibitor, CMG002, when used in combination with the autophagy inhibitor, CQ, provides enhanced therapeutic efficacy against EBVaGC.

The mTOR Signalling Pathway in Cancer and the Potential mTOR Inhibitory Activities of Natural Phytochemicals

  • Tan, Heng Kean;Moad, Ahmed Ismail Hassan;Tan, Mei Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6463-6475
    • /
    • 2014
  • The mammalian target of rapamycin (mTOR) kinase plays an important role in regulating cell growth and cell cycle progression in response to cellular signals. It is a key regulator of cell proliferation and many upstream activators and downstream effectors of mTOR are known to be deregulated in various types of cancers. Since the mTOR signalling pathway is commonly activated in human cancers, many researchers are actively developing inhibitors that target key components in the pathway and some of these drugs are already on the market. Numerous preclinical investigations have also suggested that some herbs and natural phytochemicals, such as curcumin, resveratrol, timosaponin III, gallic acid, diosgenin, pomegranate, epigallocatechin gallate (EGCC), genistein and 3,3'-diindolylmethane inhibit the mTOR pathway either directly or indirectly. Some of these natural compounds are also in the clinical trial stage. In this review, the potential anti-cancer and chemopreventive activities and the current status of clinical trials of these phytochemicals are discussed.