• 제목/요약/키워드: Akebia quinata

Search Result 47, Processing Time 0.024 seconds

Multi Layered Planting Models of Zelkova serrata Community according to Warmth Index (온량지수에 따른 느티나무군락의 다층구조 식재모델)

  • Kong, Seok Jun;Shin, Jin Ho;Yang, Keum Chul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.77-84
    • /
    • 2012
  • This study suggested the planting model of Zelkova serrata communities in the areas with the warmth index of both 80~100 and $100{\sim}120^{\circ}C{\cdot}month$. Warmth index was calculated with 449 weather points using inverse distance weighted interpolation method. The planting species were selected by correlation analysis between Z. serrata and each species of four or more frequency among the 36 relev$\acute{e}$ surveyed for this study. The result of this study is summarized as follows : Warmth index of Z. serrata communities was among $74{\sim}118^{\circ}C{\cdot}month$. Results of the correlation analysis between Z. serrata and each species observed that the Z. serrata belongs to the tree layer with warmth index of 80~100 and $100{\sim}120^{\circ}C{\cdot}month$. On the other hand, the species of Carpinus laxiflora, Quercus serrata, Prunus sargentii and Platycarya strobilacea appeared only in the tree layer with warmth index of $80{\sim}100^{\circ}C{\cdot}month$. Z. serrata and Styrax japonica appeared in the subtree layer with the warmth index of 80~100 and $100{\sim}120^{\circ}C{\cdot}month$, while Acer pseudosieboldianum, Lindera erythrocarpa, Acer mono, Quercus serrata, etc. appeared in the subtree layer with the warmth index of $80{\sim}100^{\circ}C{\cdot}month$. Z. serrata, Ligustrum obtusifolium, Lindera obtusiloba, Callicarpa japonica and Zanthoxylum schinifolium all appeared in the shrub layer with the warmth index of 80~100 and $100{\sim}120^{\circ}C{\cdot}month$. Lindera erythrocarpa, Orixa japonica, Staphylea bumalda, Akebia quinata and Sorbus alnifolia appeared in the shrub layer with the warmth index of $80{\sim}100^{\circ}C{\cdot}month$ and Styrax japonica and Stephanandra incisa appeared in the shrub layer with the warmth index of $100{\sim}120^{\circ}C{\cdot}month$, The numbers of each species planted in a $100m^2$ area of the Z. serrata community were suggested as follows : five in tree layer, five in subtree layer and nine in shrub layer. The average area of canopy are suggested to be about $86m^2$ for tree layer, $34m^2$ for subtree layer and $34m^2$ for shrub layer.

Growing features and Vegetation at natural growth area of ristics of Acanthopanax chiisanensis and Acanthopanax koreanum (지리산오갈피와 섬오갈피의 생육특성 및 자생지 식생조사)

  • 임병선;이점숙;김하송
    • Korean Journal of Plant Resources
    • /
    • v.12 no.2
    • /
    • pp.125-132
    • /
    • 1999
  • This study has investigated the growing features and vegetation of Acanthopanax chiisanensis and Acanthopanax koreanum in Mt. Jiri and Halla from Sep. 1997 to Aug. 1998. As to Acanthopanax chiisanensis, it occupied surrounding areas of Nogodan in Mt. Jiri of the height of 1,507m, ImgeolyoungJae of 1,300m and the Mt. Halla. of 1,100m of There were rather high constancy degree with Quercus mongolica, Schizandra chinensis, Hydrangen serrate for. acuminata, Acer pseudo-sieboldianum, Dryopteris crassirhizoma, Actaea asiatica, Thalictrum filamentosum, Abies koreana, Arundinella hirta from the sorts. The common species in Mt. Jiri and Halla are Acer pseudo-sieboldianum, Dryopteris crassirhizoma, Callicarpa japonica, Parthenocissus tricuspidata, Acer mono, Ligularia fischeri, Disporum smilacinum, Viola acuminata Aconitum kusnezofii. On the other hand, concerning of Acanthopanax koreanum community, it possessed the small areas of wedo weoltae village in Chejudo. In this area, a liana e.g. Dioscorea tenuipes, Hedera rhombea, Lygodium japonicum, Akebia quinata, Vitis thunbergii, Dunbaria villosa, Trachelospermum asiaticum var. intermedium, Vitis amurensis, Paederia scandens, lives with Pinux thunbergii, Celtis aurantiaca, Mallotus japonicus and so forth in tree layer and subtree layer. There is artificial change no move in the researching sites, Acanthopanax chiixanensis will be transformed into Abies koreana - Acanthopanax chiisanensis community. Soil characteristics showed the high value such as pH 6.56 and conductivity 0.258mmho/cm in Acanthopanax koreanum community of Mt. Jiri, they also indicated digit as follows: the content of organic matter and total nitrogen are from 25.16 through 25.35% and 7.58 through 9.30mg/g respectably. The soil characteristics at Acanthopanax chiisanensis community in Mt. Jiri and Halla, was high as like pH 5.76, conductivity 0.238mmho/cm, total nitrogen 9.30mg/g, total phosphorus 0.126mg/g in Mt. Halla.

  • PDF

Peroxynitrite and Hydroxyl Radical Scavenging Activity of Medicinal Plants (약용식물의 Peroxynitrite와 Hydroxyl radical 소거 활성)

  • Min, Oh-Jin;Kim, Min-Suk;Kwak, Byung-Hee;Rhyu, Dong-Young
    • Korean Journal of Plant Resources
    • /
    • v.21 no.4
    • /
    • pp.254-259
    • /
    • 2008
  • The radical scavenging activities of 9 medicinal plants on peroxynitrite ($ONOO^-$) and hydroxyl (${\cdot}OH$) radical were investigated using in vitro system. The water extracts of 9 medicinal plants showed the protective effect against $ONOO^-$ and ${\cdot}OH$ radical. In particular, Akebia quinata, Aster scaber, Cudrania tricuspidata, Diospyros kaki, Eriobotrya japonica, Lycium chinense, Parthenocissus tricuspidata and Polygonum aviculare exhibited $ONOO^-$-scavenging activity by about 50% at the concentration of $10{\mu}g/ml$. Although those $ONOO^-$-scavenging activities were lower than that of penicillamine (94.08${\pm}$3.04%) as a positive control, Eriobotrya japonica (89.87${\pm}$4.57%) was the most potent scavenger of $ONOO^-$ at the concentration of $10{\mu}g/ml$. Also, Diospyros kaki and Urtica angustifolia showed the strong${\cdot}$OH-scavenging activity than thiourea, positive control, at the concentration of lmg/ml. Our results indicate that 9medicinal plants may act as free radical scavengers and reduce damages caused by oxidative stress associated with $ONOO^-$ and${\cdot}$OH radical.

Akebiae Caulis Inhibits Oxidative Stress through AM PK Activation (AMPK 활성화를 통한 목통의 항산화 효과)

  • Jung, Eun Hye;Kim, Sang Chan;Cho, Il Je;Kim, Young Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.18-26
    • /
    • 2015
  • Akebiae Caulis is a galenical originated from Akebia quinata Decaisne species. It is commonly used in the treatment of oposiuria, inflammation, nociceptive and fever. Here, we investigated the effect of Akebiae Caulis extract (ACE) to protect hepatocyte against the malfunction of mitochondria and apoptosis. Arachidonic acid (AA)+iron promoted excessive reactive oxygen species (ROS) production and exerted a deleterious effect on mitochondria. Treatment with ACE protected hepatocytes from AA+iron-induced cytotoxicity, as shown by alterations in the protein levels related with apoptosis such as poly(ADP-ribose) polymerase, pro-caspase 3, Bcl-XL and Bcl-2. Moreover, AA+iron-induced $H_2O_2$ production, GSH depletion and mitochondrial dysfunction were alleviated by ACE pretreatment. As a potential molecular mechanism for the ACE-mediated cytoprotection, phosphorylation of AMP-activated protein kinase (AMPK), a key regulator in determining cell survival or death, was increased by ACE. Moreover, ACE treatment enhanced inactive phosphorylation of glycogen synthase kinase-$3{\beta}$ ($GSK3{\beta}$), downstream substrate kinase of AMPK. More importantly, ACE prevented a decrease in the $GSK3{\beta}$ phosphorylation derived by AA+iron, which might contribute to mitohondiral protection and cell survival. To further identify essential compounds in Akebiae Caulis for the protection of AA+iron-mediated cytotoxicity, we found that betulin in combination with hederagenin protected from AA+iron-induced mitochondrial dysfunction. Betulin+hederagenin treatment also increased inactive phosphorylation of $GSK3{\beta}$ in common with ACE. These results suggest that ACE protected hepatocytes against oxidative stress and mitochondrial dysfunction, which is mediated with inactive $GSK3{\beta}$ phosphorylation downstream of AMPK.

The Vascular Plants in Mt. Geotdae, Cheongju-si, Chungcheongbuk-do (충청북도 청주시 것대산 일대에 분포하는 관속식물상)

  • Jeoung, Tae-Young;Park, Cheol-Ha;Yun, Hee-Bin;Lee, Gwi-Yong;Ahn, Chan-Ki;Lee, Kyung-Soo;Kim, Kyung-Tae;Lee, Woo-Sung;You, Ju-Han
    • Korean Journal of Plant Resources
    • /
    • v.20 no.5
    • /
    • pp.451-460
    • /
    • 2007
  • This study was carried out to construct the data base for biodiversity conservation, and offer the raw data for obtaining the genetic resources. The vascular plants were summarized as 306 taxa; 79 families, 199 genera, 266 species, 35 varieties and 5 forma. The Korean endemic plants were 7 taxa; Salix caprea, S. purpurea var. japonica, Deuitzia coreana, Akebia quinata var. plyphylla, Spiraea prunifolia for. simpiciflora, Lonicera subsessilis and Weigela subsessilis. The naturalized plants were 16 taxa; Dactylis glomerata, Rumex acetocella, R. crispus, Phytolacca esculenta, Tlaspi arvense, Robinia pseudo-acacia, Trifolium repens, Ailanthus altissima, Oenothera lamarckiana, Veronica persica, Ambrosia artemisiifolia var. elatior, Erigeron annuus, Erigeron canadensis, Bidens frondosa, Taraxacum officinale and Sonchus asper. The specific plants by floristic region were 26 taxa; Chloranthus japonica, Populus davidiana, and so forth.

Screening of Useful Plants with Anti-inflammatory and Antioxidant Activity (항염증 및 항산화 활성 보유 유용 식물 탐색)

  • Lee, Seung-Eun;Choi, Jehun;Lee, Jeong-Hoon;Noh, Hyung-Jun;Kim, Geum-Sook;Kim, Jinkyung;Chung, Hae-Young;Kim, Seung-Yu
    • Korean Journal of Plant Resources
    • /
    • v.26 no.4
    • /
    • pp.441-449
    • /
    • 2013
  • This study was conducted to select some useful plants as functional material candidates. A total of 38 plants were preliminarily screened for the anti-inflammatory and antioxidant activities. The preliminarily selected 8 plants were further investigated to verify the in vitro inhibitory effect on inflammation and oxidative stress. Boehmeria platanifolia (root), Carpinus coreana (branch), and Eupatorium japonicum (leaf) inhibited the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Eupatorium japonicum (leaf) suppressed the expression of cyclooxygenase-2 (COX-2), whereas Boehmeria platanifolia (root) and Prunus yedoensis (branch) inhibited the transcription of nuclear factor-kappa B (NF-${\kappa}B$). Treatment with the extracts ($2.5{\sim}20{\mu}g/ml$) of Abutilon theophrasti (leaf, flower/seed) and Hemistepta lyrata (stem) did not show toxicity on RAW 264.7 cell proliferation, but treatment with $2.5{\mu}g/ml$ of Boehmeria platanifolia (root) exhibited cell toxicity. Carpinus coreana (branch) and Prunus yedoensis (branch) showed potent scavenging activities on peroxynitrite. Akebia quinata (flower), Carpinus coreana (branch), and Prunus yedoensis (branch) effectively inhibited reactive oxygen species (ROS). Abutilon theophrasti (leaf), Boehmeria platanifolia (root), Carpinus coreana (branch), and Eupatorium japonicum (leaf) exhibited strong inhibitory capacity with regard to nitric oxide (NO) production. The results suggested that Abutilon theophrasti (leaf) has in vitro anti-inflammatory and antioxidant activities, and that is a useful functional material candidate.

A Basic Study on the Selection of Plants for the Walls of Fortresses in the Case of the Jeongyi Town Wall in Jeju (제주 정의읍성 벽면식생에 근거한 벽면식재용 식물 선정에 관한 기초연구)

  • Rho, Jae-Hyun;Oh, Hyun-Kyung;Choi, Yung-Hyun;Kim, Yung-Suk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.2
    • /
    • pp.33-40
    • /
    • 2014
  • The purpose of this study is to examine vegetation of the outer walls of the Jeongyi Town Wall in Jeju and analyze the characteristics and problems identified, for suggesting preliminary data for selecting species of plants appropriate for the greening of the walls in the southern temperate climate region, including Jeju. The result of this study is as follows. The number of plants growing naturally around the walls of the town was identified to be 52 taxa. Based on the list of naturalized plants, there are 5 taxa; Sonchus oleraceus, Houttuynia cordata, Crassocephalum crepidioides, Erigeron annuus and Lamium purpureum. The number of species by district was from 3 to 14 taxa with 7.1 taxa on average. Analyzing by the constancy class, plants in class III included Sedum bulbiferum, Trichosanthes kirilowii, Hedera rhombea and Boehmeria nivea. Manipulation of the species composition table shows that the number of plant species growing naturally around the walls of Jeongyi Town Wall is a total of 52 taxa, including 11 taxa by differential species of community and 41 taxa by companion species. The types of plants very useful for the covering of the walls are evergreen climbing vine, such as Hedera rhombea, Ficus thunbergii and Euonymus fortunei and deciduous climbing vine, such as Parthenocissus tricuspidata, Trichosanthes kirilowii and Paederia scandens. In addition, Ficus stipulata is identified as a vegetation more appropriate for the southern-ward lattice-blocked walls. Woody plants, such as Akebia quinata, Celastrus flagellaris, Ampelopsis brevipedunculata for. citrulloides, Rubus hirsutus, Clematis apiifolia and herbaceous plants, such as Dioscorea tenuipes, D. quinqueloba, D. nipponica, Cayatia japonica and Paederia scandens var. angustifolia are highly useful materials for climbing plants for covering the walls of the southern province. Pteridophyte, such as Lemmaphyllum microphyllum, Pteris multifida, Cyrtomium falcatum and Lygodium japonicumare suggested as very useful for increasing unique regional characteristics of the southern province, including Jeju.