• Title/Summary/Keyword: Airy beam

Search Result 8, Processing Time 0.025 seconds

Beam Splitting by the Use of Waveguide Airy Beams

  • Kim, Kyoung-Youm;Kim, Sae-Hwa
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.403-406
    • /
    • 2011
  • Here we report Airy beams coupled with waveguide modes. These waveguide Airy (WAiry) beams propagate through layered planar structures inheriting the characteristics of waveguide modes as well as those of Airy beams, such as diffraction-free and accelerating features. In particular, we focus on the WAiry beams associated with backward waveguide modes, showing that the backward feature can alter the trajectories of the WAiry beams significantly. Based on this, we propose a new scheme of waveguide-type polarization/power beam splitters.

Propagation Dynamics of a Finite-energy Airy Beam with Sinusoidal Phase in Optical Lattice

  • Huang, Xiaoyuan;Chen, Manna;Zhang, Geng;Liu, Ye;Wang, Hongcheng
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.267-272
    • /
    • 2020
  • The propagation of a truncated Airy beam with spatial phase modulation (SPM) is investigated in Kerr nonlinearity with an optical lattice. Before the truncated Airy beam enters the optical lattice, a sinusoidal phase is introduced on the wave-front of the beam. The effect of the spatial phase modulation and optical lattice on propagation behavior is analyzed by direct numerical simulation. It is found that the propagation direction of a truncated Airy beam can be effectively controlled by adjusting the values of phase shift. The effects of optical amplitude, truncation factor, spatial modulation frequency, lattice period and lattice depth on the propagation are discussed in detail. By choosing a high modulation depth, the finite-energy Airy beam can be deflected with a large deflection angle in an optical lattice.

Anomalous Propagation Characteristics of an Airy Beam in Nonlocal Nonlinear Medium

  • Wu, Yun-Long;Ye, Qin;Shao, Li
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.191-197
    • /
    • 2021
  • The anomalous propagation characteristics of a single Airy beam in nonlocal nonlinear medium are investigated by utilizing the split-step Fourier-transform method. We show that besides the normal straight propagation trajectory, the breathing solitons formed by the interaction between Airy beam and nonlocal nonlinear medium can propagate along the sinusoidal trajectory, and the anomalous trajectory can be modulated arbitrarily by altering the initial amplitude and the nonlocal nonlinear coefficient. In addition, the initial amplitude and the nonlocal nonlinear coefficient can have inverse impacts on the formation and transformation of the equilibrium state of spatial solitons, when the two parameters are larger than certain values. Therefore, the reversible transformation of the evolution dynamics of two soliton states can be realized by adjusting those two parameters properly. Finally, it is shown that the propagation properties of the solitons formed by the interaction between Airy beam and nonlocal nonlinear medium can be controlled arbitrarily, by adjusting the distribution factor and nonlocal coefficient.

Holographic Reconstruction of Finite Airy Beams with Self-Healed and Multiplexed Features

  • Choi, Dawoon;Hong, Keehoon;Kim, Kyoung-Youm;Lee, Kyookeun;Lee, Il-Min;Lee, Byoungho
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.793-798
    • /
    • 2014
  • To generate finite-power Airy beams, a novel holographic method is proposed. We record the interference pattern between an Airy beam (signal beam) and plane wave (reference beam) on a photopolymer, then decode the hologram by illuminating with the reference beam. The reconstructed beams still present the non-diffraction, acceleration, and self-healing features of optical Airy beams. In addition, angular multiplexing of two Airy beams with opposite acceleration directions is presented.

Amplitude Filter와 Phase Filter가 결합된 광학계의 결상특성

  • 박성종;이종진;정창섭
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.9-14
    • /
    • 1993
  • We chose Bessel beamu[$J_o(ar)}$)l in order to investigate image forming property of the optical system with combined filter of amplitude and phase(CFAP). This paper investigated numerically the influence of number of nodes of these beams on the PSF, encircled energy(E), transmission ratio(TR), gain((;) for an aberrated(1aberration-free) optical system. These results showed that the property of PSF differ considerably from the one of the existing amplitude filter and that Bessel beam has super compensating effect for an optical system with spherical aberration. Particularly, the Bessel beam has less the size of central spot than the radius of Airy disk, this result can therefore be applied to the fabrication of semiconductor device.

  • PDF

The diffraction property of the bessel beam for defocus (Defous에 따른 bessel beam의 회절 특성)

  • 박성종;최기준;박민경;김재범;심상현;정창섭
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.101-107
    • /
    • 1995
  • To investigate the diffraction property of the Bessel beam for defocus which acts CFAP (Combined Filter of Amplitude and Phase), we calculated numerically the intensity, the radius of central spot, and the optical transfer function for the number of node of the Bessel beam when an optical system has an aberration-free or a spherical aberration. The Bessel beam has larger the maximum intensity and the OTF value for an optical system with a spherical aberration than that with an aberrationfree. Particularly, the OTF value at the point of maximum intensity for $W_{40}=3\lambda$is higher for the Bessel beam than for the Clear aperture. From these results, we know that the Bessel beam has the compensating effect. The Bessel beam also has the radius of central spot having a superresolution. We will useful for the fabrication of semiconductor device and the optical recording system using these effects.ffects.

  • PDF

A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.581-593
    • /
    • 2021
  • This model is proposed to describe the buckling behavior of Carbon Nanotubes (CNTs) embedded in an elastic medium taking into account the combined effects of the magnetic field, the temperature, the nonlocal parameter, the number of walls. Using Eringen's nonlocal elasticity theory, thin cylindrical shell theory and Van der Waal force (VdW) interactions, we develop a system of partial differential equations governing the buckling response of CNTs embedded on Winkler, Pasternak, and Kerr foundations in a thermal-magnetic environment. The pre-buckling stresses are obtained by applying airy's stress function and an adjacent equilibrium criterion. To estimate the nonlocal critical buckling load of CNTs under the simultaneous effects of the magnetic field, the temperature change, and the number of walls, an optimization technique is proposed. Furthermore, analytical formulas are developed to obtain the buckling behavior of SWCNTs embedded in an elastic medium without taking into account the effects of the nonlocal parameter. These formulas take into account VdW interactions between adjacent tubes and the effect of terms involving differences in tube radii generally neglected in the derived expressions of the critical buckling load published in the literature. Most scientific research on modeling the effects of magnetic fields is based on beam theories, this motivation pushes me to develop a cylindrical shell model for studying the effect of the magnetic field on the static behavior of CNTs. The results show that the magnetic field has significant effects on the static behavior of CNTs and can lead to slow buckling. On the other hand, thermal effects reduce the critical buckling load. The findings in this work can help us design of CNTs for various applications (e.g. structural, electrical, mechanical and biological applications) in a thermal and magnetic environment.