• Title/Summary/Keyword: Airway Inflammation

Search Result 249, Processing Time 0.03 seconds

Anti-asthmatic activities of Cypress oil in a mouse model of allergic asthma (마우스 모델을 이용한 사이프러스 오일의 알러지성 천식 억제 효과)

  • Sueng, Yun-Cheal;Chung, Kyu-Jin;Cheong, Kwang-Jo
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.341-351
    • /
    • 2015
  • This study was aimed to evaluate the effects of Cypress oil(CS) on anti-asthmatic activities in a mouse model of allergic asthma. Using an Ovalbumin-induced allergic asthma mouse model, 0.3% of CS was administered to experimental group using a nebulizer for 3 weeks on a basis of 3 times per week and 30min each time. The degree of airway hypersensitivity, the number of eosinophil in white blood cells, the number of immune cells and the change of cytokine in lung tissue were evaluated. The degree of airway hypersensitivity, the number of eosinophil, IL-5 and IL-13 levels in lung tissue, IgE in serum, the number of CCR3, CD3, CD4 cells were significantly decreased in experimental group treated with CS. These results suggested that CS may have a positive effects on Th2 cytokine and eosinophils which are major factors of asthma responses. Therefore CS might be of therapeutic value in treating asthma.

Lutein Modulates Th2 Immune Response in Ovalbumin-Induced Airway Inflammation (Ovalbumin으로 유도한 천식 생쥐모델에서 lutein의 Th2 면역반응 연구)

  • Song, Jun-Young;Lee, Chang-Min;Lee, Min-Ki
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.298-305
    • /
    • 2012
  • The general term flavonoids is often used to categorize a family of natural compounds that are highly abundant in all higher plants, and which in recent years have attracted scientific interest as therapeutics. Lutein is a xanthophyll and one of 600 known naturally occurring carotenoids. It is found in green vegetables such as spinach and kale, and has been demonstrated to exert anti-inflammatory activities. However, its anti-allergic effect in the Th1/Th2 immune response is poorly understood. In this study, we attempt to determine whether lutein regulates inflammatory mediators in an ovalbumin (OVA)-induced murine asthma model. To address this, mice were sensitized and challenged with OVA, and then treated with lutein before the last OVA challenge. Administration of lutein significantly suppressed the OVA-induced airway hyper-responsiveness. It also resulted in a significant alleviation of the infiltration of inflammatory cells into the bronchoalveolar lavage. Additionally, lutein attenuated the increased expression of Th2 responses in OVA-challenged mice. These results demonstrate that lutein is a potent inhibitor that reduces Th2 immune responses. Furthermore, they show that the immunopharmacological function is mediated by a pathway that involves and is regulated by Th2 immune response.

Role of Interleukin-4 (IL-4) in Respiratory Infection and Allergy Caused by Early-Life Chlamydia Infection

  • Li, Shujun;Wang, Lijuan;Zhang, Yulong;Ma, Long;Zhang, Jing;Zu, Jianbing;Wu, Xuecheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1109-1114
    • /
    • 2021
  • Chlamydia pneumoniae is a type of pathogenic gram-negative bacteria that causes various respiratory tract infections including asthma. Chlamydia species infect humans and cause respiratory infection by rupturing the lining of the respiratory which includes the throat, lungs and windpipe. Meanwhile, the function of interleukin-4 (IL-4) in Ch. pneumoniae respiratory infection and its association with the development of airway hyperresponsiveness (AHR) in adulthood and causing allergic airway disease (AAD) are not understood properly. We therefore investigated the role of IL-4 in respiratory infection and allergy caused by early life Chlamydia infection. In this study, Ch. pneumonia strain was propagated and cultured in HEp-2 cells according to standard protocol and infant C57BL/6 mice around 3-4 weeks old were infected to study the role of IL-4 in respiratory infection and allergy caused by early life Chlamydia infection. We observed that IL-4 is linked with Chlamydia respiratory infection and its absence lowers respiratory infection. IL-4R α2 is also responsible for controlling the IL-4 signaling pathway and averts the progression of infection and inflammation. Furthermore, the IL-4 signaling pathway also influences infection-induced AHR and aids in increasing AAD severity. STAT6 also promotes respiratory infection caused by Ch. pneumoniae and further enhanced its downstream process. Our study concluded that IL-4 is a potential target for preventing infection-induced AHR and severe asthma.

Protective Effect of Paulownia tomentosa Fruits in an Experimental Animal Model of Acute Lung Injury

  • Kim, Seong-Man;Ryu, Hyung Won;Kwon, Ok-Kyoung;Min, Jae-Hong;Park, Jin-Mi;Kim, Doo-Young;Oh, Sei-Ryang;Lee, Seung Jin;Ahn, Kyung-Seop;Lee, Jae-Won
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.310-318
    • /
    • 2022
  • The fruits of Paulownia tomentosa (Thunb.) (PT) Steud. have been reported to exert a variety of biological activities. A previous study confirmed that compounds isolated from PT fruits (PTF) exerted anti-inflammatory effects on TNF-α-stimulated airway epithelial cells. However, there is no report on the protective effects of PTF on acute lung injury (ALI). Here, we examined the ameliorative effects of PTF in an experimental animal model of lipopolysaccharide (LPS)-induced ALI. In ALI mice, increased levels of inflammatory cell influx were confirmed in the lungs of mice, and an increase of microphage numbers, TNF-α, IL-6 and MCP-1 production and protein content were detected in mouse bronchoalveolar lavage fluid. However, these increases were significantly reversed with PTF pretreatment. In addition, PTF inhibited the increased expression of iNOS and COX-2 in the lungs of ALI mice. Furthermore, the upregulation of MAPK and NF-κB activation was decreased in the lungs of ALI mice by PTF. In the in vitro experiment, PTF pretreatment exerted an anti-inflammatory effect by inhibiting the secretion of nitric oxide, TNF-α and IL-6 in LPS-stimulated RAW264.7 macrophages. Collectively, these results indicated that PTF has ameliorative effects on airway inflammation in an experimental animal model of ALI.

Recurrent Bronchopneumonia in Bronchiectasis, Despite Antibiotic Treatment: A Case Report on Combined Treatment with Korean and Western Medicine (항생제 치료에도 반복되는 기관지확장증 환자의 기관지폐렴에 대한 한양방 복합 치험 1례)

  • Jeong-Won Shin;Jiwon Park;Su-Hyun Chin;Hee-Jae Jung;Kwan-Il Kim;Beom-Joon Lee
    • The Journal of Internal Korean Medicine
    • /
    • v.45 no.2
    • /
    • pp.287-302
    • /
    • 2024
  • Background: Bronchiectasis is a chronic respiratory condition leading to recurrent respiratory infections. Despite the use of antibiotics and other standard treatments, managing bronchiectasis remains challenging due to the frequent recurrence of airway infections and concerns about antimicrobial resistance. Given these challenges, traditional Korean medicine (TKM) has gained attention due to its potential to reduce the frequency of respiratory infections, possibly minimizing the need for antibiotics. Case report: A 59-year-old female with bronchiectasis experienced recurrent pneumonia and was treated with antibiotics for over 2 weeks without any significant improvement in clinical symptoms. She received comprehensive Korean medicine treatment, including herbal medicine (Sikyungbanha-tang combined with Bigwabojungikki-tang-gami), acupuncture, and Chuna manual therapy, for pulmonary rehabilitation. Post-treatment, clinically meaningful improvements were observed in symptoms, serum C-reactive protein (CRP) levels, and bronchopneumonic lesions on chest X-rays. Conclusion: This case suggests that complex traditional Korean medicine treatments for recurrent chronic airway inflammation due to bronchiectasis can lead to clinically significant improvements in symptoms and help to prevent recurrence.

The Effects of Gamchomahwang-tang extract According to the ratio of 2 compounds on the Ovalbumin-Induced Allergic Asthma in Mice (甘草麻黃湯 추출물의 배합 비율에 따른 투여가 Ovalbumin으로 유발된 천식 생쥐에 미치는 영향)

  • Jo, So-Hyun;Jo, Eun-Hee;Park, Min-Cheol
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.28 no.4
    • /
    • pp.74-91
    • /
    • 2015
  • Background and Objective : Asthma is a chronic inflammatory disease at the mucosa and is associated with excess production of Th2 cytokine and eosinophil accumulation in lung.Gamchomahwang-tangextract(GME) is one of the well known prescription used in oriental medicine for treating asthma. This study was designed to compare the anti-asthmatic effect of GME according to the ratio of 2 compounds.Methods : To examine the effects of GME on asthma, mice were sensitized with 100 ㎍ of OVA and 1 ㎎ of aluminum potassium sulfate(Alum; Sigma) intraperitoneally on day 1 and 15. From day 22, mice were challenged on 3 consecutive days with 5% OVA. The anti-asthmatic effects of GME were evaluated by enhanced pause(Penh), bronchoalveolar lavage fluids (BALF), inflammatory cytokine production and genes expression, serum IgE production. and histological change in lung tissue. GMEⅠ consists of ES and GU in the proportion 2:1(300 ㎎/㎏ group), GMEⅡ consist of ES and GU in the proprtion 4:1(300 ㎎/㎏ group).Results : GMEⅠ,Ⅱ generally inhibited lung inflammation, inflammatory cells infiltration and cytokine production and gene expression such as IL-4, IL-5 and IL-13 in BALF and serum IgE level. GMEⅡ significantly reduced the cytokine production and gene expression such as IL-4, IL-5 and IL-13 in BALF and GMEⅠ decreased cytokine production of IL-4, IL-13 in BALF and gene expression of IL-4, IL-5 in Lung. GMEⅡ potently inhibited the development of Penh and also reduced the number of eosinophil during OVA-induced AHR(airway hyper-reactivity). Overall the results show that GMEⅡ has more effect on inhibiting production, gene expression of cytokine, serum IgE level and development of Penh than GMEⅠ. Consequently, GMEⅡ might be more effective than GMEⅠ at inhibiting allergic asthma on the OVA-induced mice model.Conclusion : These results indicate that GME has a deep inhibitory effects on airway inflammation and hyperresponsiveness in mice model of asthma and that suppression of IL-4, IL-5, IL-13 expression and decrease of IL-4, IL-5, IL-13 production in BALF might contribute this effect. Hence, the results indicate that GME might be useful herbal medicine of allergic asthma. As a result, GMEⅡ mght be superior to GMEⅠ in the aspect of anti-asthmatic effect on the OVA-induced mice model.

Experimental Study on Anti-inflammatory, Antitussive, and Expectoration Effects of Friltillariae Thunbergii Bulbus (절패모(浙貝母)의 항염 및 진해거담 효과에 대한 실험연구)

  • Kim, Jin Hoo;Yang, Won Kyung;Lee, Su Won;Lyu, Yee Ran;Kim, Seung Hyung;Park, Yang Chun
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.3
    • /
    • pp.339-349
    • /
    • 2020
  • Objective: This study aimed to evaluate anti-inflammatory and antitussive expectoration effects of Friltillariae Thunbergii Bulbus (FTB) in a mouse model. Materials and Methods: To evaluate the anti-inflammatory effects of the FTB, we conducted in vitro experiments using RAW264.7 cells. An MTT assay and enzyme-linked immunosorbent assay (ELISA) were carried out to examine the anti-inflammatory effects of FTB. The expectorant effect on phenol red secretion, the antitussive effect on cough induced by ammonia solution, and leukocyte increased inhibition effects in acute airway inflammation in the animal model were confirmed. Results: FTB did not show cytotoxicity in the experimental group at 10, 30, 50, 100, 300, or 500 ㎍/ml and significantly inhibited the increase of NO, TNF-α and IL-6 in the experimental groups at 30, 50, 100, 300, and 500 ㎍/ml concentrations. In sputum, cough, and acute airway inflammation animal models, FTB significantly increased phenol red secretion in the 400 mg/kg administration group. FTB significantly reduced the number of coughs and significantly increased cough delay time in both 200 and 400 mg/kg dose groups. FTB decreased the white blood cell count in BALF (bronchoalveolar lavage fluid) in the 400 mg/kg administration group. Conclusion: Our study revealed that FTB elicits antitussive and expectorant effects by inhibiting inflammatory cytokines, increasing sputum secretion, suppressing cough, and reducing inflammatory cells. We concluded that FTB is a highly promising agent for respiratory tract infection with therapeutic opportunities.

Mycoplasma pneumoniae-induced production of proasthmatic mediators in airway epithelium (인체 기관지 상피세포에서 Mycoplasma pneumoniae 감염에 의한 천식 매개물질의 발현)

  • Kim, Kyung Won;Lee, Byung Chul;Lee, Kyung Eun;Kim, Eun Soo;Song, Tae Won;Park, Mi Yeoun;Sohn, Myung Hyun;Kim, Kyu-Earn
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.9
    • /
    • pp.977-982
    • /
    • 2006
  • Purpose : There has been an increasing amount of literature concerning the association between Mycoplasma pneumoniae and asthma pathogenesis. Interleukin(IL)-6 stimulates the differentiation of monocytes, and can promote Th2 differentiation and simultaneously inhibit Th1 polarization. IL-8 is a potent chemoattractant and, it has been suggested, has a role in asthma pathogenesis. Nitric oxide (NO) synthesized by airway epithelium may be important in the regulation of airway inflammation and reactivity. Vascular endothelial growth factor(VEGF) has been reported to be a mediator of airway remodeling in asthma. We investigated the effects of M. pneumoniae on IL-6, IL-8, NO and VEGF production in human respiratory epithelial cells. Methods : A549 cells were cultured and inoculated with M. pneumoniae at a dose of 20 cfu/cell. After infection, the presence of M. pneumoniae in epithelial cell cultures was monitored by immunofluorescence and confirmed by polymerase chain reaction(PCR) detection. IL-6, IL-8 and VEGF were determined by an enzyme-linked immunosorbent assay and reverse transcriptase-polymerase chain reaction. NO was measured using the standard Griess reaction. Results : In A549 cells, M. pneumoniaeinduced IL-6, IL-8, NO and VEGF release in time-dependent manners. It also induced mRNA expression of IL-6, IL-8 and VEGF in similar manners. Conclusion : These observations suggest that M. pneumoniae might have a role in the pathogenesis of the allergic inflammation of bronchial asthma.

Perfluorocarbon Does Not Inhibit Chemokine Expression in Airway Epithelial Cells (Perfluorocarbon이 기도 상피세포 Chemokine 발현에 미치는 영향에 관한 연구)

  • Suh, Gee-Young;Kang, Kyeong-Woo;Park, Sang-Joon;Chung, Man-Pyo;Kim, Ho-Joong;Choi, Dong-Chull;Rhee, Chong-H;Kwon, O-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.2
    • /
    • pp.223-235
    • /
    • 2000
  • Background: Liquid ventilation is associated with decreased inflammatory response in an injured lung. This study was performed to investigate if whether perfluorocarbon(PFC) can decrease chemokine expression in airway epithelial cells. Methods: A549 cells were used for airway epithelial cells and perfluorodecalin for PFC. To expose cells to PFC, lower chamber of Transwell$^{(R)}$plate was used. This study was performed in two parts. In the first part, we examined whether PFC could decrease chemokine expression in airway epithelial cells through inhibition of other inflammatory cells. Peripheral blood mononuclear cells(PBMC's) were isolated and stimulated with lipopolysaccharide(LPS, 10 ${\mu}g/mL$) for 24 hours with or without exposure to PFC. Then A549 cells were stimulated with conditioned media(CM) containing the culture supernatants of PBMC. After 24 hours, the expressions of interleukin-8(IL-8) and RANTES were measured. In the second part of the study, we studied whether PFC could directly suppress chemokine expression in airway epithelial cells. A549 cells were stimulated for 24 hours with interleukin-l$\beta$ and/or tumor necrosis factor-$\alpha$ with or without exposure to PFC, and then the chemokine expression was measured. Northern analysis was used to measure the mRNA expression, and ELISA was used for immunoreactive protein measurements in culture supernatant. Results: 1. IL-8 and RANTES mRNA expression and immunoreactive protein production were increased significantly by CM from LPS-stimulated PBMC in A459 cells compared to with CM from unstimulated PBCM (p<0.05), but exposure of PFC had no significant effect on either mRNA expression or immunoreactive protein expression. 2. IL-8 and RANTES mRNA expression and immunoreactive protein production were increased significantly by IL-1$\beta$ and TNF-$\alpha$ in A549 cells(p<0.05), but exposure of PFC had no significant effect on neither either mRNA expression nor immunoreactive protein production. Conclusion : Decreased chemokine expression of airway epithelial cells may not be involved in decreased inflammatory response observed in liquid ventilation. Further studies on possible mechanisms of decreased inflammatory response are warranted.

  • PDF

Role of Protease Activated Receptor 2 (PAR2) in Aspergillus Protease Allergen Induces Th2 Related Airway Inflammatory Response (Aspergillus 단백분해효소 알러젠에 의해 유도된 Th2 관련 기도염증반응에서 protease activated receptor 2 (PAR2)의 역할)

  • Yu, Hak-Sun
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.503-510
    • /
    • 2010
  • Most allergens have protease activities, suggesting that proteases may be a key link between Th2-type immune reactions in allergic responses. Protease activated receptor (PAR) 2 is activated via the proteolytic cleavage of its N-terminal domain by proteinases. To know the role of PAR2 in Aspergillus protease allergen activated Th2 immune responses in airway epithelial cells, we investigated and compared immune cell recruitment and level of chemokines and cytokines between PAR2 knock out (KO) mice and wild type (WT) mice. There were evident immune cell infiltrations into the bronchial alveolar lavage fluid (BALF) of WT mice, but the infiltrations in PAR2 KO mice were significantly lowered than those of WT mice. The IL-25, TSLP, and eotaxin gene expressions were profoundly increased after Aspergillus protease, but their expression was significantly lowered in PAR2 KO mice in this study. Compared to PAR2 KO mice, OVA specific IgE concentrations in serum of WT mice were quite increased; moreover, the IgE level of PAR2 KO mice was lower than in WT mice. The IL-25 expression by Aspergillus protease stimulation was significantly reduced by p38 specific inhibitor treatment. In this study, we determined that Th2 response was initiated with IL-25 and TSLP mRNA up-regulation in lung epithelial cells via PAR2 after Aspergillus protease allergen treatment.