• Title/Summary/Keyword: Airspeed

Search Result 44, Processing Time 0.023 seconds

Robust Airspeed Estimation of an Unpowered Gliding Vehicle by Using Multiple Model Kalman Filters (다중모델 칼만 필터를 이용한 무추력 비행체의 대기속도 추정)

  • Jin, Jae-Hyun;Park, Jung-Woo;Kim, Bu-Min;Kim, Byoung-Soo;Lee, Eun-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.859-866
    • /
    • 2009
  • The article discusses an issue of estimating the airspeed of an autonomous flying vehicle. Airspeed is the difference between ground speed and wind speed. It is desirable to know any two among the three speeds for navigation, guidance and control of an autonomous vehicle. For example, ground speed and position are used to guide a vehicle to a target point and wind speed and airspeed are used to maximize flight performance such as a gliding range. However, the target vehicle has not an airspeed sensor but a ground speed sensor (GPS/INS). So airspeed or wind speed has to be estimated. Here, airspeed is to be estimated. A vehicle's dynamics and its dynamic parameters are used to estimate airspeed with attitude and angular speed measurements. Kalman filter is used for the estimation. There are also two major sources arousing a robust estimation problem; wind speed and altitude. Wind speed and direction depend on weather conditions. Altitude changes as a vehicle glides down to the ground. For one reference altitude, multiple model Kalman filters are pre-designed based on several reference airspeeds. We call this group of filters as a cluster. Filters of a cluster are activated simultaneously and probabilities are calculated for each filter. The probability indicates how much a filter matches with measurements. The final airspeed estimate is calculated by summing all estimates multiplied by probabilities. As a vehicle glides down to the ground, other clusters that have been designed based on other reference altitudes are activated. Some numerical simulations verify that the proposed method is effective to estimate airspeed.

Airspeed and Altitude Calibration of Light Airplane via Flight Test (비행시험을 통한 경비행기의 속도계 보정에 대한 연구)

  • Lee, Jung-Hoon;Kim, Sung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.891-896
    • /
    • 2007
  • This paper contained the flight test calibration for the airspeed indicator and the altimeter of the light airplane ChangGong-91, which is the first type certified aircraft from Korean Ministry of Construction and Transportation, as a part of the flight test validation. The flight test for airspeed position error calibration was performed using tower fly by method in order to calibrate swivel head testboom which is attached to the right wing tip of the airplane, and using system to system method for airspeed indicator. The altimeter calibration was calculated using flight test data for airspeed calibration. The flight test was conducted at the basis of the 'Korean Airworthiness Standard' regulation of Korean Ministry of Construction and Transportation.

  • PDF

Airspeed Calibration of a Light Airplane via Flight Test (비행시험을 통한 경비행기의 속도계 보정)

  • Lee, Jung-Hoon;Yoo, Si-Yoong;Lee, Jang-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.629-634
    • /
    • 2008
  • This paper presents the flight test procedure and the results for the airspeed indicator calibration of a light airplane the name of ChangGong-91, which is the first type certified aircraft from Korean Ministry of Construction and Transportation, as a part of the flight test validation to get the certification. The flight tests for airspeed position error calibrations are conducted using tower fly by method in order to calibrate swivel head testboom which is attached to the right wing tip of the airplane. Also system to system method is applied in order to calibrate the airspeed indicator of the cockpit. The flight test is conducted at the basis of the 'Korean Airworthiness Standard' which is the regulation of Korean Ministry of Construction and Transportation. The airspeed error range for the testboom and the airspeed indicator are determined to $-0.75{\sim}+0.75$ knot and to $-4.0{\sim}+2.0$ knots, respectively. The calibration results are applied to ChangGong-91 Flight Operation Manual.

Wind and Airspeed Error Estimation with GPS and Pitot-static System for Small UAV

  • Park, Sanghyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.344-351
    • /
    • 2017
  • This paper presents a method to estimate steady wind and airspeed bias error using an aircraft with GPS and airspeed sensor. The estimation uses the vector relation between the inertial, air, and wind velocities through a novel design of an extended Kalman filter. The observability analysis is also presented to show that the aircraft is required to keep changing its flight direction for the desired observability. The feasibility and performance of the proposed algorithm is demonstrated through simulations and flight experiments.

Airspeed Estimation of Course Correction Munitions by Using Extended Kalman Filter (확장 칼만필터를 이용한 탄도수정탄의 대기속도 추정)

  • Sung, Jaemin;Kim, Byoung Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.405-412
    • /
    • 2015
  • This paper represents a filter design to estimate the airspeed of a spin-stabilized, trajectory-correctible artillery ammunition. Due to the limited power and space in operational point of view, the airspeed sensor is not installed, and thus the airspeed need to be estimated using limited sensor measurements. The only IMU measurements(three-axis specific forces and angular rates) are used in this application. The extended Kalman filter algorithm is applied since a linear filter can not cover the its wide operational range in airspeed and altitude. In the implementation of the EKF, the state and measurement equations are transformed into the no-roll frame for simple form of Jacobian matrix. The simulation study is conducted to evaluate the performance of the filter under various environment conditions of sensor noise and wind turbulence. In addition, the effect of the choice in filter design parameters, i.e. process error covariance matrices is analyzed on the performance of the estimation of airspeed and angular rates.

Airspeed Estimation Through Integration of ADS-B, Wind, and Topology Data (ADS-B, 기상, 지형 데이터의 통합을 통한 대기속도 추정)

  • Kim, Hyo-Jung;Park, Bae-Seon;Ryoo, Chang-Kyung;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.67-74
    • /
    • 2022
  • To analyze the motion of aircraft through computing the dynamics equations, true airspeed is essential for obtaining aerodynamic loads. Although the airspeed is measured by on-board instruments such as pitot tubes, measurement data are difficult to obtain for commercial flights because they include sensitive data about the airline operations. One of the commonly available trajectory data, Automatic Dependent Surveillance-Broadcast data, provide aircraft's speed in the form of ground speed. The ground speed is a vector sum of the local wind velocity and the true airspeed. This paper present a method to estimate true airspeed by combining the trajectory, meteorological, and topology data available to the public. To integrate each data, we first matched the coordinate system and then unified the altitude reference to the mean sea level. We calculated the wind vector for all trajectory points by interpolating from the lower resolution grid of the meteorological data. Finally, we calculate the true airspeed from the ground speed and the wind vector. These processes were applied to several sample trajectories with corresponding meteorological data and the topology data, and the estimated true airspeeds are presented.

Development and Validations of Air Data System using MEMS Sensor for High-Performance UAV (MEMS 압력센서를 이용한 고성능 무인항공기용 공력자료시스템의 개발과 검증)

  • Baek, Un-Ryul;Kim, Sung-Su;Kim, Sung-Hwan;Park, Choon-Bae;Choi, Kee-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.1017-1025
    • /
    • 2008
  • The air data system(ADS) was developed for unmanned aerial vehicle(UAV) in this paper. Generally, the ADS helps flight control computer(FCC) to control the UAV above the stall speed and to hold the given altitude. The accurate measurement of airspeed and altitude of UAV is important because it indicates a flight performance and assures a safe flight. The ADS consists of MEMS pressure sensors, a lowpass filter, a micro controller unit and a pitot-tube. The ADS errors were reduced by pressure and temperature compensation of MEMS sensors. Finally, the altitude and airspeed data of the ADS was compared with GPS data in the flight test.

Trim Range and Characteristics of Autorotation(II): Advance Ratio Variation and Flapping Characteristics (자동회전의 트림 범위와 특성(II): 전진비 변화와 플래핑 특성)

  • Kim, Hak-Yoon;Choi, Seong-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.498-504
    • /
    • 2011
  • The flapping characteristics and advance ratios at torque equilibrium state of autorotation were investigated when the airspeed, shaft angle, and pitch angle were varied. To simulate the airspeed increase, the aerodynamic data analyzed by using the compressible Navier-Stokes solver and Pitt/Peters inflow theory were used. Transient Simulation Method(TSM) was used to catch the torque equilibrium states. The maximum flapping angles at torque equilibrium state were correlated to the airspeed, shaft angle, and pitch angle. By comparing flapping behavior to the variation of advance ratio, the phenomenon that the extension of reverse flow area of retreating blade affects the characteristics of autorotation was qualitatively considered.

Airspeed, Altitude Calibration and Climb Performance of Twin Bee by Flight Test (쌍발 복합재 비행기의 속도, 고도 보정 및 상승성능에 관한 연구)

  • Hwang, Myoung-Shin;Park, Youn-Jin;Lee, Jung-Mo;Kim, Chil-Young;Eun, Hee-Bong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.5 no.1
    • /
    • pp.7-16
    • /
    • 1997
  • Airspeed and altimeter calibration of Twin Bee was conducted by the flight test. We have adopted system to system method. Flight test data is corrected for instrumented error and position error, and the resultin data was satisfied. Climb Performance flight test also was conducted. But we could not have all data because of limited flight time. The resulted data was satisfied compare with calculated data.

  • PDF

Flight Test of Pitch Control Force for an Airplane (항공기 피치 조종력 비행시험)

  • Lee, Jung-hoon
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.3
    • /
    • pp.20-26
    • /
    • 2014
  • This paper presents the procedures and the results of the pitch control force via flight test for a light airplane in order to make out the stability of the aircraft and the compliance with concerned regulation. The flight test procedures were determined in order to obtain the aircraft type certification. The instrumentation equipments including airspeed indicator, accelerometer, and pitch control force measurement tools are used to perform the flight test. For the flight test, the airspeed and the pitch control force with related normal acceleration are measured sustaining turn flight with bank angle derived from trim speed. The flight test results showed that the handling qualities of the airplane are complied with the KAS-23, the regulation of the Korean government for the light airplane type certification.