• Title/Summary/Keyword: Airflow Rate

Search Result 224, Processing Time 0.022 seconds

A Study on Evaluation of Natural Ventilation Rate and Thermal Comfort during the Intermediate Season considering by Window Layout and Open Window Ratio (학교 교실의 창호 배치 및 개방면적비에 따른 중간기 자연환기량 및 쾌적성 평가에 관한 연구)

  • Kim, Yeo-Jin;Choi, Jeong-Min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.207-214
    • /
    • 2019
  • Natural ventilation through openings such as windows in school buildings is an efficient resource for natural cooling during the intermediate season of the year. Because the natural ventilation uses the wind outside the building, the amount of ventilation will depend not only on the wind speed and wind direction but also on the window layout and open window ratio. Therefore, in this study, the natural ventilation plans of school classroom windows are divided into 4 types and 8 cases as shown in Table 1. The characteristics of cooling effect by natural ventilation are simulated by applying Energyplus's Airflow Network Model and the comfort of the occupants is evaluated by the number of hours included in the 80% acceptability range of the ASHRAE Standard 55-2010 adaptive comfort model for the weekdays (Monday-Friday) and the class hours (08: 00-19: 00). Based on the analysis results of the above, this study presents basic data related to classroom cooling plan using intermediate season natural ventilation.

Implementation of an in vitro exposure system for 28 GHz

  • Lee, Young Seung;Dzagbletey, Philip Ayiku;Chung, Jae-Young;Jeon, Sang Bong;Lee, Ae-Kyoung;Kim, Nam;Song, Seong Jong;Choi, Hyung-Do
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.837-845
    • /
    • 2020
  • The objective of this study was to implement an in vitro exposure system for 28 GHz to investigate the biological effects of fifth-generation (5G) communication. A signal source of 28 GHz for 5G millimeter-wave (MMW) deployment was developed, followed by a variable attenuator for antenna input power control. A power amplifier was also customized to ensure a maximum output power of 10 W for high-power 28-GHz exposure. A 3-dB uniformity over the 80 mm × 80 mm area that corresponds to four Petri dishes of three-dimensional cell cultures can be obtained using a customized choke-ring-type antenna. An infrared camera is employed for temperature regulation during exposure by adjusting the airflow cooling rate via real-time feedback to the incubator. The reported measurement results confirm that the input power control, uniformity, and temperature regulation for 28-GHz exposure were successfully accomplished, indicating the possibility of a wide application of the implemented in vitro exposure system in the fields of various MMW dose-response studies.

Thermo-hydraulic Effect of Tubular Heat Exchanger Fitted with Perforated Baffle Plate with Rectangular Shutter-type Deflector

  • Md Atiqur Rahman
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.191-199
    • /
    • 2024
  • A study was conducted on a tubular heat exchanger to improve its heat transfer rate by using a novel baffle plate design with discontinuous swirling patterns. The design consisted of perforated baffle plates with rectangular air deflectors positioned at varying angles. The tubes in the heat exchanger were arranged in a consistent alignment with the airflow direction and exposed to a uniform heat flux on their surfaces. Each baffle plate included sixteen deflectors inclined at the same angle and arranged in a clockwise pattern. This arrangement induced a swirling motion of the air inside a circular duct where the heated tubes were located, leading to increased turbulence and improved heat transfer on the tube surfaces. The spacing between the baffle plates was adjusted at different pitch ratios, and the Reynolds number was controlled within a range of 16,000 to 29,000. The effects of pitch ratios and inclination angles on the heat exchanger's performance were analyzed. The results indicated that using a baffle plate with rectangular deflectors inclined at 30° and a pitch ratio of 1.2 resulted in an average increase of 1.29 in the thermal enhancement factor.

Effect of the Physical Parameters and Alkalinity in the Ammonia Stripping (반응조의 물리적 인자와 알칼리도가 암모니아 탈기에 미치는 영향에 관한 연구)

  • An, Ju-Suk;Lim, Ji-Hye;Back, Ye-Ji;Chung, Tae-Young;Chung, Hyung-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.583-590
    • /
    • 2011
  • The effect of the physical parameters in the reactor (aeration depth, bubble size, and surface area) and the alkalinity of the solution on the ammonia stripping by bubbling were evaluated. When an airflow of 30 L/min was bubbled below the solution surface in the range 6-53 cm, the ammonia removal rate were observed to be the same regardless of the bubbling depths. At pH 10.0 and a temperature of $30^{\circ}C$, the average rate constant and the standard deviation were $0.178h^{-1}$ and 0.004. No appreciable changes in the ammonia removal rate were also observed with varying the bubble size and the air-contacting surface area. Alkalinity of the solution was found to affect the ammonia removal rate indirectly. This is expected because the pH of the solution would vary with dissolution of gaseous $CO_2$ by air bubbling. The real wastewaters from landfill site and domestic wastewater treatment plant were tested. In the case of domestic wastewater (pH = 7.1, alkalinity = 75 mg/L), the ammonia removal rate was poor even with the control of pH to 9.3. The raw landfill leachate (pH = 8.0, alkalinity = 6,525 mg/L), however, showed the appreciable removal rate with increasing pH during aeration. When the initial pH of the leachate was adjusted 9.4, the removal rate was significantly increased without changing the pH during aeration.

In-Bin Drying of Paddy with Ambient Air: Influence of Drying Parameters on Drying Time, Energy Requirements and Quality (상온통풍에 의한 벼의 In-Bin 건조 : 건조시간, 에너지 소요량 및 품질에 미치는 건조조건의 영향)

  • Cheigh, Hong-Sik;Muhlbauer, Werner;Rhim, Jong-Whan;Shin, Myung-Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.25-32
    • /
    • 1985
  • Low-temperature in-bin paddy drying has been examined to study the limitations of this drying method under Korean weather conditions, the initial moisture content of the paddy, the bulk depth and the airflow rate. The results are reported and discussed with regard to drying time, energy requirements and costs, uniformity in the moisture content of the dried kernels and, finally, the quality of the paddy. The tests carried out during the paddy-drying period in 1981 and 1982 have shown that under Korean weather conditions paddy can be dried to safe storage conditions by continuous aeration with ambient air. Depending upon the initial moisture content of the kernels(19.2%-25.5% w.b.), the bulk depth(1.1-3.5m) and the airflow $(3.0-6.9m^3\;air/m^3\;paddy/min)$ the paddy could be dried within 5 to 17 days. The energy requirements and energy costs are shown to be considerably lower than for conventional high-temperature drying. No significant changes in the quality in terms of milling yield, cracking ratio, acid value and germination were observed.

  • PDF

Study of Pressure Cooling of Agricultural Products Using a Pallet Bin (팔레트 빈(pallet bin)을 이용한 농산물의 차압통풍 냉각 연구)

  • Jeong, Hoon;Yun, Hong-Sun;Lee, Hyun-Dong;Kim, Young-Keun;Lee, Won-Ok
    • Food Science and Preservation
    • /
    • v.15 no.6
    • /
    • pp.847-851
    • /
    • 2008
  • The handling and processing of agricultural products in Korea is done manually. Small plastic boxes, nets, and corrugated cardboard boxes are used as containers during harvesting, sorting and other product handling operations. However, these practices are labor-intensive, time-consuming, require various kinds of packing materials, and are expensive because of high operating costs. To overcome these problems, the use of pallet bins with pre-cooling and storage features for handling and processing bulk farm products was investigated. The airflow resistances through bulk potato, onion and mandarin stocks were measured, and the pallet bins and a pressure pre-cooling device were manufactured. The opening ratio, bed depth and airflow rate through bulk potato, onion and mandarin in the pallet bin were defined with regression equations. The cooling rates of bulk potato, onion and mandarin were 0.8C/h ($21.7{\rightarrow}0C$, 14.5 h), 0.4C/h ($15.4{\rightarrow}.0C$, 32.2 h) and 0.7C/h ($13.7{\rightarrow}C$, 18.8 h), respectively, with the pressure pre-cooling system. Temperature deviances for storage of bulk potato, onion and mandarin were 0.12C, 0.12C and 0.17C, respectively.

Uniformity of Temperature in Cold Storage Using CFD Simulation (CFD 시뮬레이션을 이용한 농산물 저온저장고내의 온도분포 균일화 연구)

  • Jeong, Hoon;Kwon, Jin-Kyung;Yun, Hong-Sun;Lee, Won-Ok;Kim, Young-Keun;Lee, Hyun-Dong
    • Food Science and Preservation
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • To maintain the storage quality of agricultural products, temperature uniformity during cold storage, which is affected by fan flow rate and product arrangement, is important. We simulated and validated a CFD (Computational Fluid Dynamics) model that can predict both airflow and temperature distribution in a cold storage environment. Computations were based on a commercial code (FLUENT 6.2) and two turbulence models. The standard k-$\varepsilon$ model and the Reynolds stress model (RSM) were chosen to improve the accuracy of CFD prediction. To obtain comparative data, the temperature distribution and velocity vector profiles were measured in a full-scale cold storage facility and in a 1/5 scale model. The agricultural products domain in cold storage was modeled as porous for economical computation. The RSM prediction showed good agreement with experimental data. In addition, temperature distribution was simulated in the cold storage rooms to estimate the uniformity of temperature distribution using the validated model.

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Irregular Waves) (해수소통구를 구비한 진동수주형 파력발전구조물 내 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(불규칙파의 경우))

  • Lee, Kwang Ho;Lee, Jun Hyeong;Jeong, Ik Han;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.253-262
    • /
    • 2018
  • Oscillating Water Column (OWC) Wave Energy Converters (WEC) harness electricity through a Power-Take-Off (PTO) system from the induced-airflow by seawater oscillating inside a chamber. In general, an air chamber with a relatively small cross-sectional area is required compared to seawater chamber to obtain high-velocity air in the PTO system, and in order to simulate an accurate air flow rate in the air chamber, a three-dimensional study is required. In this study, the dynamic response of OWC-WEC that is equipped with the channel of seawater exchange for the case of irregular waves has been numerically studied. The open source CFD software, OLAFLOW for the simulation of wave dynamics to the openFOAM and FOAM-extend communities, was used to simulate the interaction between the device and irregular waves. Based on the numerical simulation results, we discussed the fluctuation characteristics of three dimensional air flow in the air-chamber, wave deformation around the structure and the seawater flow inside the channel of seawater exchange. The numerical results the maximum air flow velocity in the air-chamber increases as the Ursell value of the significant wave increases, and the velocity of airflow flowing out from the inside of air chamber to the outside is greater than the speed of flowing into the air chamber from the outside.

In-Bin Drying of High-Moisture Paddy with Continuous Blowing of Ambient Air (연속상온 통풍에 의한 고수분 벼의 In-Bin 건조에 관한 연구)

  • Cheigh, Hong-Sik;Rhim, Jong-Whan;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.271-275
    • /
    • 1982
  • Low-temperature in-bin drying with high-moisture paddy were demonstrated and studied under local autumn weather condition. Paddy with the initial moisture content of about 24.5 percent in the steel storage bin(diameter: 3 m, height: 3.17 m) was uniformly dried to about 15 percent by continuous blowing of ambient air (average temperature: $10.5^{\circ}C$, RH: 58 percent) in the middle part of October. The amount of grain and grain height were 4.19 M/T and 90 cm, respectively. Total fan operation time was 288 hours and airflow rate was $4.81\;m^3/min/m^3$ of paddy. Mean drying rate was 0.03 percent per hour and enery requirement for fan operation was 0.38 KWh per kg water removed.

  • PDF

Ventilation Efficiency Evaluation of Domestic Limestone Mine Using Tracer Gas Method (추적가스법을 적용한 국내 석회석 광산의 환기성능 평가 연구)

  • Kim, Young-su;Roh, Jang-hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.274-282
    • /
    • 2016
  • Natural ventilation is employed in limestone mines that have been currently operated in Korea, and there has been a growing issue of a significantly weak airflow caused by the large-scale excavation. Thus, the air quality in the working area is considerably poor. In order to improve this circumstance, it is mainly required to examine ventilation performance. In this study, the examination of ventilation efficiency was conducted by using tracer gas method. The result of this work indicated detailedly the ventilation problems in research mine, in that extremely low air velocity, recirculation, and air change rate were evaluated quantitatively using tracer gas. Therefore the ventilation performance evaluation using tracer gas can be opted as a precise method to improve the working area in mines.