• Title/Summary/Keyword: Aircraft emissions

Search Result 51, Processing Time 0.021 seconds

Impact of Air Pollutant Emissions from Aircraft on the Air Pollution around Airport (항공기 배출량 산정 방법에 따른 공항주변 대기오염 영향분석연구)

  • Han, Seung-Jae;Yoo, Jung-Woo;Lim, Yoon-Jin;Lee, Soon-Hwan;Lee, Hwa-Woon
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.2089-2099
    • /
    • 2014
  • Emissions from aircraft have impacts on the air pollution of airport and the surrounding area. There are methods of emissions calculated as Tier 1, Tier2, Tier 3A and Tier 3B. Thus, this study investigated emissions from aircraft at the Gimhae International Airport using EDMS(Emissions & Dispersion Modeling System) program. Results of estimation from aviation emissions, Tier 3B considering all parts which can occur at the airport has the largest amount emissions. In order to understand the relation between aviation emissions and distribution of ozone concentration over airport area, numerical evaluation were carried out. Although the difference of surface ozone distribution between numerical assessment with and without aviation emissions was little, effects of air pollution at airport area from aviation emissions of NOx and VOCs.

Emissions of Air Pollutants and Greenhouse Gases from Aircraft Activities at the Gimhae International Airport (김해공항에서 항공기에 의한 대기오염물질과 온실가스의 배출량 산정 및 특성 분석)

  • Song, Sang-Keun;Shon, Zang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.190-202
    • /
    • 2012
  • Emissions of air pollutants and greenhouse gases (GHGs) by aircraft at the Gimhae International Airport (GIA) were investigated using the Emissions and Dispersion Modeling System (EDMS) version 5.1.3. The number of Landing and Take-Off (LTO) at the GIA for aircraft B737 was dominant, accounting for more than 60% of the total LTOs. For air pollutant emissions, CO was the most dominant pollutant by aircraft, followed by $NO_x$, VOCs, $SO_x$, etc. The emissions of CO, $NO_x$, and VOCs in 2009 (and 2010) at the GIA were 974 (968), 447 (433), 118 (122) ton/yr, respectively. The emissions of GHGs such as $CO_2$, $CH_4$, and $N_2O$ in 2009 (and 2010) were 110,795 (111,114), -0.157 (-0.151), and 1,989 (1,998) ton/yr, respectively. The negative number in $CH_4$ emission represents the consumption of atmospheric $CH_4$ in the engine. In addition, the emissions of most air pollutants (except for $PM_{10}$) and GHGs were estimated to be high in Taxi-Out and Climb-Out modes.

Emissions of Air Pollutants and Greenhouse Gases from Aircraft Activities at the Small Scale Airports (국내 일반공항에서 항공기에 의한 대기오염물질과 온실가스의 배출량 산정 및 특성 분석)

  • Shon, Zang-Ho;Song, Sang-Keun;Yoon, Tae-Kyung;Lee, Gang-Choon
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.823-836
    • /
    • 2013
  • Emissions of air pollutants and greenhouse gases (GHGs) from aircraft activities at 11 small-scale airports were investigated using the emissions and dispersion modeling system (EDMS) version 5.1.3 during the two year period of 2009~2010. The number of landing and take-off (LTO) at these airports was dominant for the aircraft type B737, accounting for more than 60% of the total LTOs. Out of the 11 small-scale airports, Gwangju (GJ, RKJJ) airport was the largest emitter of air pollutants and GHGs, whereas Yangyang (YY, RKNY) airport was the smallest emitter. The emissions of $NO_x$ and VOCs in 2010 at the 11 airports ranged from 1.9 to 83 ton/y and 0.1 to 17 ton/y, respectively. In 2010, the emissions of $CO_2$ ranged from 394 to 21,217 ton/y. The emissions of most air pollutants (except for $NO_x$ and $PM_{10}$) and GHGs were estimated to be the highest in taxi-out mode. The highest emissions of $NO_x$ and $PM_{10}$ were emitted from climb-out and approach modes, respectively. In addition, the total LTOs at the 11 small-scale airports accounted for the range of 9.3~9.9% of those at four major international airports in Korea. The total emissions of air pollutants and GHGs at the 11 airports ranged from 4.8 to 12% of those at the four major airports.

New Requirements of Environmental Standard for Aircraft Engine Exhaust Emissions (환경규제 강화에 따른 항공기 배기가스 배출기준 개정 방안 연구)

  • Noh, Ji-Sub;Kim, Kyeong-Su;Nam, Young-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.spc
    • /
    • pp.7-12
    • /
    • 2020
  • In this paper the new revision of Korean Airworthiness Standards (KAS) - Emissions was proposed for enforced environmental standards. The Aircraft Engine Fuel Venting and Exhaust Emissions Requirements have been only defined for smoke, HC, CO and NOx as management items in previous KAS. However, this standard has not covered the current situation that International Civil Aviation Organization (ICAO) and United States Environmental Protection Agency (EPA) enforced environmental regulations, such as emissions trading system, limitation of CO2 emissions and restriction of exhaust gas. In order to overcome these outdated situations, we presented the new requirements for aircraft exhaust gas emissions standard of Korea based on the latest standards of United States, Europe and other countries.

Influence of Greenhouse Gas Emissions from Commercial Aircraft at Korean International Airports on Radiative Forcing and Temperature Change (국내 대규모 공항의 항공기 온실가스 배출에 따른 복사강제력 및 기온변화 영향 연구)

  • Song, Sang-Keun;Shon, Zang-Ho;Jeong, Ju-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.223-232
    • /
    • 2014
  • Monthly variations of radiative forcing (RF) and mean temperature changes by greenhouse gases emitted from commercial aircraft were estimated based on the simplified expression at four international airports (Incheon, Gimpo, Jeju, and Gimhae Airports) during the years of 2009~2010. The highest RF and mean temperature change in the study area occurred at Incheon Airport, whereas the lowest RF and mean temperature change at Gimhae Airport. During 2009~2010, the mean RF and mean temperature change estimated from aircraft $CO_2$ emissions at Incheon Airport were approximately 30.0 $mW/m^2$ and $0.022^{\circ}K$, respectively. The mean RF and mean temperature changes caused by other greenhouse gas $N_2O$ was significantly small (<<0.1 $mW/m^2$ and << $1{\times}10^{-3}^{\circ}K$). Meanwhile, $CH_4$ emissions caused negative mean RF ($-4.45{\times}10^{-3}mW/m^2$ at Incheon Airport) and the decrease of mean temperature ($-3.83{\times}10^{-6}^{\circ}K$) due to consumption of atmospheric $CH_4$ in the aircraft engine.

Aircraft Emission and Fuel Burn Estimation Due to Changes of Payload and Range (비행거리와 적재량 변화에 따른 항공기 온실가스 배출량 및 연료소모량 산정)

  • Joo, Hee-jin;Hwang, Ho-yon;Park, Byung-woon;Lim, Dongwook
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.278-287
    • /
    • 2015
  • The potential impact of aircraft emissions on the current and projected climate of our planet is one of the more important environmental issues facing the aviation industry. Increasing concern over the potential negative effects of greenhouse gas emissions has motivated the development of an aircraft emission estimation and prediction system as one of the ways to reduce aircraft emissions and mitigate the impact of aviation on climate. Hence, in this research, using Piano-X software which was developed by Lissys Co., fuel consumption and emissions for 3 types of aircraft were estimated for different design payloads with various flight distances and flight paths. Fuel burns for economy speed, long range cruise speed, maximum range speed were also investigated with various flight distances and altitudes.

Optimization of aircraft fuel consumption and reduction of pollutant emissions: Environmental impact assessment

  • Khardi, Salah
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.311-330
    • /
    • 2014
  • Environmental impact of aircraft emissions can be addressed in two ways. Air quality impact occurs during landings and takeoffs while in-flight impact during climbs and cruises influences climate change, ozone and UV-radiation. The aim of this paper is to investigate airports related local emissions and fuel consumption (FC). It gives flight path optimization model linked to a dispersion model as well as numerical methods. Operational factors are considered and the cost function integrates objectives taking into account FC and induced pollutant concentrations. We have compared pollutants emitted and their reduction during LTO cycles, optimized flight path and with analysis by Dopelheuer. Pollutants appearing from incomplete and complete combustion processes have been discussed. Because of calculation difficulties, no assessment has been made for the soot, $H_2O$ and $PM_{2.5}$. In addition, because of the low reliability of models quantifying pollutant emissions of the APU, an empirical evaluation has been done. This is based on Benson's fuel flow method. A new model, giving FC and predicting the in-flight emissions, has been developed. It fits with the Boeing FC model. We confirm that FC can be reduced by 3% for takeoffs and 27% for landings. This contributes to analyze the intelligent fuel gauge computing the in-flight fuel flow. Further research is needed to define the role of $NO_x$ which is emitted during the combustion process derived from the ambient air, not the fuel. Models are needed for analyzing the effects of fleet composition and engine combinations on emission factors and fuel flow assessment.

Legal Review on the Regulatory Measures of the European Union on Aircraft Emission (구주연합의 항공기 배출 규제 조치의 국제법적 고찰)

  • Park, Won-Hwa
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.25 no.1
    • /
    • pp.3-26
    • /
    • 2010
  • The European Union(EU) has recently introduced its Directive 2008/101/EC to include aviation in the EU ETS(emissions trading system). As an amendment to Directive 2003/87/EC that regulates reduction of the green house gas(GHG) emissions in Europe in preparation for the Kyoto Protocol, 1997, it obliges both EU and non-EU airline operators to reduce the emission of the carbon dioxide(CO2) significantly in the year 2012 and thereafter from the level they made in 2004 to 2006. Emission allowances allowed free of charge for each airline operator is 97% in the first year 2012 and 95% from 2013 and thereafter from the average annual emissions during historical years 2004 to 2006. Taking into account the rapid growth of air traffic, i.e. 5% in recent years, airlines operating to EU have to reduce their emissions by about 30% in order to meet the requirements of the EU Directive, if not buy the emissions right in the emissions trading market. However, buying quantity is limited to 15% in the year 2012 subject to possible increase from the year 2013. Apart from the hard burden of the airline operators, in particular of those from non-European countries, which is not concern of this paper, the EU Directive has certain legal problems. First, while the Kyoto Protocol of universal application is binding on the Annex I countries of the Climate Change Convention, i.e. developed countries including all Member States of the European Union to reduce GHG at least by 5% in the implementation period from 2008 to 2012 over the 1990 level, non-Annex I countries which are not bound by the Kyoto Protocol see their airlines subjected to aircraft emissions reductions scheme of EU when operating to EU. This is against the provisions of the Kyoto Protocol dealing with the emissions of GHG including CO2, target of the EU Directive. While the Kyoto Protocol mandates ICAO to set up a worldwide scheme for aircraft emissions to contribute to stabilizing GHG concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system, the EU ETS was drawn up outside the framework of the international Civil Aviation Organization(ICAO). Second, EU Directive 2008/101 defines 'aviation activities' as covering 'flights which depart from or arrive in the territory of a Member State to which the [EU] Treaty applies'. While the EU airlines are certainly subject to the EU regulations, obliging non-EU airlines to reduce their emissions even if the emissions are produced during the flight over the high seas and the airspace of the third countries is problematic. The point is whether the EU Directive can be legally applied to extra-territorial behavior of non-EU entities. Third, the EU Directive prescribes 2012 as the first year for implementation. However, the year 2012 is the last year of implementation of the Kyoto Protocol for Annex I countries including members of EU to reduce GHG including the emissions of CO2 coming out from domestic airlines operation. Consequently, EU airlines were already on the reduction scheme of CO2 emissions as long as their domestic operations are concerned from 2008 until the year 2012. But with the implementation of Directive 2008/101 from 2012 for all the airlines, regardless of the status of the country Annex I or not where they are registered, the EU airlines are no longer at the disadvantage compared with the airlines of non-Annex I countries. This unexpected premium for the EU airlines may result in a derogation of the Kyoto Protocol at least for the year 2012. Lastly, as a conclusion, the author shed light briefly on how the Korean aviation authorities are dealing with the EU restrictive measures.

  • PDF

Emission Estimation for Airports in Korea Using AEIC Program (AEIC 프로그램을 사용한 국내 공항 항공 온실가스 배출량 산정)

  • Joo, Hee-jin;Hwang, Ho-yon;Lim, Dongwook
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.275-284
    • /
    • 2016
  • The potential impact of aircraft emissions on the current and projected climate of our planet is one of the more important environmental issues facing the aviation industry. Increasing concern over the potential negative effects of greenhouse gas emissions has motivated aircraft emission estimation and prediction as one of the ways to reduce aircraft emissions and mitigate the impact of aviation on climate. We obtained airline flight schedules for all the airports in Korea that are included in OAG data. Fuel burn and emission index of LTO flight which contains take off, climb and approach under 3000ft and Non LTO flight which contains climb, cruise and descent over 3000ft for all the airports in Korea in 2005 were estimated and analysed for each condition using AEIC software which has been developed by MIT Lab for Aviation and Environment.

A prototype to improve endurance of solar powered aircraft using MPPT and rechargeable battery

  • Leo Paul Amuthan George;Anju Anna Jacob
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.23-31
    • /
    • 2024
  • This paper addresses the enhancement of long-endurance solar-powered aircraft through the integration of a rechargeable battery and Maximum Power Point Tracking (MPPT) controller. Traditional long-endurance aircraft often rely on non-renewable energy sourcessuch as batteries orjetfuel, contributing to carbon emissions. The proposed system aims to mitigate these environmental impacts by harnessing solar energy and efficiently managing its storage and utilization. The MPPT controller optimizes the power output of photovoltaic cells, enabling simultaneous charging and discharging of the battery for propulsion and servo control. A prototype is presented to illustrate the practical implementation and functionality of the proposed design, marking a promising step towards more sustainable and enduring solar-powered flight.