• Title/Summary/Keyword: Aircraft Vibration

Search Result 348, Processing Time 0.027 seconds

Vibration effects on remote sensing satellite images

  • Haghshenas, Javad
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.543-553
    • /
    • 2017
  • Vibration is a source of performance degradation in all optical imaging systems. Performance of high resolution remote sensing payloads is often limited due to satellite platform vibrations. Effects of Linear and high frequency sinusoidal vibrations on the system MTF are known exactly in closed form but the low frequency vibration effects is a random process and must be considered statistically. Usually the vibration MTF budget is defined based on the mission requirements and the overall MTF limitations. For analyzing low frequency effects, designer must know all the systems specifications and parameters. With a good understanding of harmful vibration frequencies and amplitudes in the system preliminary design phase, their effects could be removed totally or partially. This procedure is cost effective and let the designer to eliminate just harmful vibrations and avoids over-designing. In this paper we have analyzed the effects of low-frequency platform vibrations on the payload's modulation transfer function. We have used a statistical analysis to find the probability of imaging with a MTF equal or greater than a pre-defined budget for different missions. The worst and average cases have been discussed and finally we have proposed "look-up figures". Using these look-up figures, designer can choose the electro-optical parameters in such a way that vibration effects be less than its pre-defined budget. Furthermore, using the results, we can propose a damping profile based on which vibration frequencies and amplitudes must be eliminated to stabilize the payload system.

Effect of dynamic absorber on the nonlinear vibration of SFG cylindrical shell

  • Foroutan, Kamran;Ahmadi, Habib
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.291-308
    • /
    • 2020
  • In this paper, a numerical method is utilized to study the effect of a new vibration absorber on vibration response of the stiffened functionally graded (SFG) cylindrical shell under a couple of axial and transverse compressions. The material composition of the stiffeners and shell is continuously changed through the thickness. The vibration absorber consists of a mass-spring-damper system which is connected to the ground utilizing a linear local damper. To simplify, the spring element of the vibration absorber is called global potential. The von Kármán strain-displacement kinematic nonlinearity is employed in the constitutive laws of the shell and stiffeners. To consider the stiffeners in the model, the smeared stiffener technique is used. After obtaining the governing equations, the Galerkin method is applied to discretize the nonlinear dynamic equation of system. In order to find the nonlinear vibration responses, the fourth order Runge-Kutta method is utilized. The influence of the stiffeners, the dynamic absorber parameters on the vibration behavior of the SFG cylindrical shell is investigated. Also, the influences of material parameters of the system on the vibration response are examined.

Measurement of Aircraft Wing Deformation and Vibration Using Stereo Pattern Recognition Method (스테레오 영상을 이용한 비행 중인 항공기 날개의 변위 및 진동 측정)

  • Kim, Ho-Young;Yoon, Jong-Min;Han, Jae-Hung;Kwon, Hyuk-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.568-574
    • /
    • 2015
  • The present study was conducted by using stereo pattern recognition method(SPR method) to measure the displacement and vibration of an airplane wing in flight condition. A SPR based measurement system was developed using two visible light stereo cameras. The visible light stereo images were processed to obtain marker points by adaptive threshold method and marker filtering technique. The marker points were used to reconstruct 3D point, displacement, and vibration data. The SPR system was installed on F-16 fighter. The wing displacement and vibration were measured in flight condition. Therefore, this paper presents a possibility that SPR based measurement system using visible light stereo camera can be very useful for measuring displacement and vibration of an airplane in flight condition.

Study on Performance of Electric Propulsion Systems for Aircraft applying Magnetic Gears (마그네틱 기어를 적용한 항공기용 전기추진 시스템의 성능 연구)

  • Sung-Hyun Lee;Rae-Eun Kim;Jung-Moo Seo
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.27-34
    • /
    • 2023
  • This paper presents the application of a magnetic gear to the electric propulsion system for an aircraft. Since high torque is required in aircraft electric propulsion systems, combining a speed reducer can amplify the torque. However, mechanical gears have issues, such as friction, vibration, and heat generation, which lead to maintenance challenges. In the case of a direct-drive motor that does not use mechanical gears, the size and weight of the motor increase to achieve high torque. This paper proposes the application of a magnetic gear to solve the maintenance issues of mechanical gears and the weight increase problem of direct-drive motors in aircraft electric propulsion systems. In this paper, a magnetic gear suitable for aircraft electric propulsion systems is designed, and it is compared with a direct-drive motor in terms of performance and the feasibility of applying the magnetic gear is verified.

Probabilistic vibration and lifetime analysis of regenerated turbomachinery blades

  • Berger, Ricarda;Rogge, Timo;Jansen, Eelco;Rolfes, Raimund
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.503-521
    • /
    • 2016
  • Variances in turbomachinery blades caused by manufacturing, operation or regeneration can result in modified structural behavior. In this work, the scatter of geometrical and material properties of a turbine blade and its influence on structure performance is discussed. In particular, the vibration characteristics and the lifetime of a turbine blade are evaluated. Geometrical variances of the surface of the blades are described using the principal component analysis. The scatter in material properties is considered by 16 varying material parameters. Maximum vibration amplitudes and the number of load cycles the turbine blade can withstand are analyzed by finite element simulations incorporating probabilistic principles. The probabilistic simulations demonstrate that both geometrical and material variances have a significant influence on the scatter of vibration amplitude and lifetime. Dependencies are quantified and correlations between varied input parameters and the structural performance of the blade are detected.

Stability Analysis of an Mounting Equipment for External Pod on Aircraft by Road Test (항공기 외장형 포드 장착장비의 주행 안정성 분석)

  • Lee, Jong-Hak;Jang, Jong-Youn;Kang, Young-Sik;Choi, Ji-Ho;Kang, Dong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.424-429
    • /
    • 2013
  • The trolley carrying the pod moves along by the airfield runway. The pod through the trolley are subjected to vibration arising from the ground state, the precision optical components in the pod can have a significant impact. The road tests were conducted by using the measurement pod to remove the risk for the project. The measurement pod was composed with the ACRA, sensors, battery. The accelerometers were attached to get the acceleration through the road condition. The PSD envelop was calculated by FFT from the acceleration. The driving safety was proven through comparing the measurement data and MIL-STD-810G specification.

  • PDF

Vibration analysis of generalized thermoelastic microbeams resting on visco-Pasternak's foundations

  • Zenkour, Ashraf M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.269-280
    • /
    • 2017
  • The natural vibration analysis of microbeams resting on visco-Pasternak's foundation is presented. The thermoelasticity theory of Green and Naghdi without energy dissipation as well as the classical Euler-Bernoulli's beam theory is used for description of natural frequencies of the microbeam. The generalized thermoelasticity model is used to obtain the free vibration frequencies due to the coupling equations of a simply-supported microbeam resting on the three-parameter viscoelastic foundation. The fundamental frequencies are evaluated in terms of length-to-thickness ratio, width-to-thickness ratio and three foundation parameters. Sample natural frequencies are tabulated and plotted for sensing the effect of all used parameters and to investigate the visco-Pasternak's parameters for future comparisons.

Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads

  • Jin-Peng Song;Gui-Lin She;Yu-Jie He
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.99-109
    • /
    • 2024
  • Studying the dynamic behavior of axially moving cylindrical shells in hygro-thermal environments has important theoretical and engineering value for aircraft design. Therefore, in this paper, considering hygro-thermal effect, the nonlinear forced vibration of an axially moving cylindrical shell made of functionally graded materials (FGM) is studied. It is assumed that the material properties vary continuously along the thickness and contain pores. The Donnell thin shell theory is used to derive the motion equations of FGM cylindrical shells with hygro-thermal loads. Under the four sides clamped (CCCC) boundary conditions, the Gallekin method and multi-scale method are used for nonlinear analysis. The effects of power law index, porosity coefficient, temperature rise, moisture concentration, axial velocity, prestress, damping and external excitation amplitude on nonlinear forced vibration are explored through parametric research. It can be found that, the changes in temperature and humidity have a significant effect. Increasing in temperature and humidity will cause the resonance position to shift to the left and increase the resonance amplitude.

항공기 소음 측정평가

  • 이성진
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.36-40
    • /
    • 1998
  • 공항주변지역의 항공기 소음영향은 항공기 1대에 의한 소음크기나 시끄러움보다는 항공기가 계속하여 반복 운항하는데 더욱 큰 영향이 있다.그래서 ICAO가 1971년에 공포한 Annex 16 Aircraft Noise중에서 다수의 항공기에 의해 장기간 연속폭로 된 소음척도로서 EPNL에 항공기 운항회수와 운항시간대등을 고려한 WECPNL(가중 등가속 감각 소음 레벨 : Weighted Equivalent Continuous Perceived Noise Level)이 제안되었다.

  • PDF