• 제목/요약/키워드: Aircraft Structures

검색결과 356건 처리시간 0.043초

Improving wing aeroelastic characteristics using periodic design

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권4호
    • /
    • pp.353-369
    • /
    • 2017
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness, and inertia forces on a structure. In an aircraft, as the speed of the flow increases, there may be a point at which the structural damping is insufficient to damp out the motion which is increasing due to aerodynamic energy being added to the structure. This vibration can cause structural failure, and therefore considering flutter characteristics is an essential part of designing an aircraft. Scientists and engineers studied flutter and developed theories and mathematical tools to analyze the phenomenon. Strip theory aerodynamics, beam structural models, unsteady lifting surface methods (e.g., Doublet-Lattice) and finite element models expanded analysis capabilities. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. This may reduce the vibration level of the structure, and hence improve its dynamic performance. In this paper, for the first time, we analyze the flutter characteristics of a wing with a periodic change in its sandwich construction. The new technique preserves the external geometry of the wing structure and depends on changing the material of the sandwich core. The periodic analysis and the vibration response characteristics of the model are investigated using a finite element model for the wing. Previous studies investigating the dynamic bending response of a periodic sandwich beam in the absence of flow have shown promising results.

2024-T351 알루미늄 합금판 프레팅 피로수명 예측 (Prediction of Fretting Fatigue Life on 2024-T351 Al-alloy)

  • 권정호;황경정
    • 한국항공우주학회지
    • /
    • 제35권7호
    • /
    • pp.601-611
    • /
    • 2007
  • 기계적 체결로 조립된 대부분의 항공기 구조는 볼트나 리벳구멍 가장자리의 부재간 접촉면 또는 체결구멍 부위에서 프레팅 손상을 받게 된다. 이러한 프레팅 부분슬립 경계부위에는 높은 접촉응력이 유발되고 이로 인해 프레팅 피로균열이 조기에 발생되어 피로수명을 현저히 감소시키게 된다. 본 연구는 2024-T351 알루미늄 합금판에 대하여 서로 다른 프레팅 조건하에서 일련의 프레팅 피로실험을 수행하여 역학적 파라미터와 프레팅 접촉조건 변수들과의 정량적 연계성을 검토하였다. 그리고 역학적 파라미터를 기초로 하는 기존의 수명예측 모델의 유효성을 분석하고 수정 적용하였다. 또한 파라미터 변화에 따른 접촉면에서의 응력 및 변형률 변화 거동을 고찰하기 위하여 탄소성 유한요소해석을 통하여 접촉응력을 해석하고 프레팅접촉 파라미터들과 피로균열 발생수명 사이의 관계에 대해 고찰하였다.

복합재 소형 항공기 구조 인증 고려사항에 대한 고찰 (A Consideration on Composite Material Certification for Small Aircraft Structure)

  • 서장원
    • 항공우주산업기술동향
    • /
    • 제7권1호
    • /
    • pp.128-140
    • /
    • 2009
  • 본 논문에서는 FAR Part 23에 따른 복합재 소형항공기 구조 인증시 복합재료의 인증활동에서 발생할 수 있는 기술적 문제점 또는 고려사항을 검토하고, 이에 대한 인증 신청자가 수행해야 할 것으로 예상되는 사항을 검토하였다. 본 논문은 복합재 인증시 발생하는 기술적 문제에 초점을 맞추어 규정과의 관계 및 인증 경험에 관련한 기술 적 문제를 설명하였다. 복합재 인증활동에 대한 개괄적 내용과 복합재 항공기 구조물의 인증에 유용한 지침과 참고자료를 제시하고 있다. 본 논문에 소개된 일반적인 인증에 관련한 내용은 모든 복합재료 구조에 대해 적용되어지지 않을 수 있으며, 비행 안전에 치명적이지 않는 2차 구조에 대해서는 적용되어지지 않을 수 있다.

  • PDF

Real time crack detection using mountable comparative vacuum monitoring sensors

  • Roach, D.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.317-328
    • /
    • 2009
  • Current maintenance operations and integrity checks on a wide array of structures require personnel entry into normally-inaccessible or hazardous areas to perform necessary nondestructive inspections. To gain access for these inspections, structure must be disassembled and removed or personnel must be transported to remote locations. The use of in-situ sensors, coupled with remote interrogation, can be employed to overcome a myriad of inspection impediments stemming from accessibility limitations, complex geometries, the location and depth of hidden damage, and the isolated location of the structure. Furthermore, prevention of unexpected flaw growth and structural failure could be improved if on-board health monitoring systems were used to more regularly assess structural integrity. A research program has been completed to develop and validate Comparative Vacuum Monitoring (CVM) Sensors for surface crack detection. Statistical methods using one-sided tolerance intervals were employed to derive Probability of Detection (POD) levels for a wide array of application scenarios. Multi-year field tests were also conducted to study the deployment and long-term operation of CVM sensors on aircraft. This paper presents the quantitative crack detection capabilities of the CVM sensor, its performance in actual flight environments, and the prospects for structural health monitoring applications on aircraft and other civil structures.

Aluminium Based Brazing Fillers for High Temperature Electronic Packaging Applications

  • Sharma, Ashutosh;Jung, Jae-Pil
    • 마이크로전자및패키징학회지
    • /
    • 제22권4호
    • /
    • pp.1-5
    • /
    • 2015
  • In high temperature aircraft electronics, aluminium based brazing filler is the prime choice today. Aluminium and its alloys have compatible properties like weight minimization, thermal conductivity, heat dissipation, high temperature precipitation hardening etc. suitable for the aerospace industry. However, the selection of brazing filler for high temperature electronics requires high temperature joint strength properties which is crucial for the aerospace. Thus the selection of proper brazing alloy material, the composition and brazing method play an important role in deciding the final reliability of aircraft electronic components. The composition of these aluminium alloys dependent on the addition of the various elements in the aluminium matrix. The complex shapes of aluminium structures like enclosures, heat dissipaters, chassis for electronic circuitry, in avionics are designed from numerous individual components and joined thereafter. In various aircraft applications, the poor strength caused by the casting and shrinkage defects is undesirable. In this report the effect of various additional elements on Al based alloys and brazing fillers have been discussed.

비용절감을 위한 항공기 2차 Fairing구조물의 RTM 적용 가능성 연구 (A Feasibility Study of RTM Application on Secondary Fairing Structure of Aircraft)

  • 김태곤;이동준;이건영;신대영
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.189-192
    • /
    • 2002
  • The autoclave process is frequently utilized in the manufacturing of aircraft parts because of the low void content and high fiber volume fraction. However, due to the slow curing process (5∼8 hours per part) and it's limited producibility for complicated shape, this process is very expensive and applied to the relatively simple geometry structures. RTM is considered as an alternative process to overcome the limitation of autoclave process. In this study, the idea of RTM application on the secondary Fairing structure of aircraft has been proved to be technically feasible and very cost effective by changing the multiple part of subassembly into one integral composite structure.

  • PDF

RBDO analysis of the aircraft wing based aerodynamic behavior

  • El Maani, Rabii;Makhloufi, Abderahman;Radi, Bouchaib;El Hami, Abdelkhalak
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.441-451
    • /
    • 2017
  • The need of progress in engineering designs especially for aerospace structure is nowadays becoming a major industry request. The objectives of this work are to quantify the influence of material and operational uncertainties on the performance of the aerodynamic behavior of an Aircraft Wing, and to give a description of the most commonly used methods for reliability based design optimization (RBDO) to point out the advantages of the application of this method in the design process. A new method is proposed, called Safest Point (SP) that can efficiently give the reliability-based optimum solution for freely vibrating structures with and without fluid flow.

면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석 (Impact force and acoustic analysis on composite plates with in-plane loading)

  • 김성준;박일경;안석민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.244-249
    • /
    • 2011
  • The potential hazards resulting from a low-velocity impact (bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or a leading edges, has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

  • PDF

인력비행기 개발을 위한 설계 및 제작 고려 요소 (The Design and Construction Consideration for Developing the Human Powered Aircraft)

  • 이기영;최성옥
    • 한국항공운항학회지
    • /
    • 제17권1호
    • /
    • pp.29-38
    • /
    • 2009
  • This paper surveys the historical perspective and design considerations for developing the human powered aircraft(HPA). Especially the weight and materials, aerodynamics, flight controls, and power trains are focused. The average power a human can produce and sustain is approximately 200${\sim}$250 W which is a critical design constraint of HPA. The survey shows that the empty weight of HPA was in the 30${\sim}$40 kg range(90${\sim}$110 kg include pilot). Thus, in order to design a successful HPA, the value of power to weight ratio should be 2.0 W/kg or above. The HPA design technique could be applied directly to the development of an unmanned high altitude airplanes used for atmospheric research, where light structures, low Reynolds number aerodynamics and high efficiency propeller design are required as well.

  • PDF

소형 항공기 엔진 마운트 구조물의 피로 건전성 평가 (Estimation of Fatigue Integrity for Small Aircraft Engine Mount Strut)

  • 이무형;박일경;김성준;안석민
    • 한국항공운항학회지
    • /
    • 제19권4호
    • /
    • pp.58-66
    • /
    • 2011
  • The estimation of fatigue integrity is very important for aerospace structures such as engine mount strut. The reason is that the fatigue integrity is essential analysis process to establish the structural stability in aerospace field. Therefore, in this paper, the process of fatigue analysis and test was performed for engine mount strut to prove the structural fatigue integrity. First of all, the fatigue load spectrum is constructed by considering the small aircraft operating condition. Fatigue analysis is done for the cluster near the welding zone which may have F.C.L.(fracture critical location). The fatigue life of engine mount strut was estimated by the Miner's rule which is the damage summation method. Finally, Fatigue test is performed to verify the fatigue integrity. The estimation process of fatigue integrity for engine mount strut of small aircraft may help the design.