• Title/Summary/Keyword: Aircraft Radar

Search Result 193, Processing Time 0.034 seconds

The Trend of System Level Thermal Management Technology Development for Aero-Vehicles (항공기 시스템 레벨 열관리 기술개발 동향)

  • Kim, Youngjin;Son, Changmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Modern aircraft is facing the increase of power demands and thermal challenges. In accordance with the application of more electric technology and advanced mission requirement, aircraft system requires increase of power generation and it cause increase of internal heat generation. Simultaneously, restrictions have significantly been imposed to the thermal management system. Modern aircraft must maintain low radar observability and infra-red signature. In addition, new composite aircraft skins have reduced the amount of heat that can be rejected to the environment. The combination of these characteristics has increased the challenges faced by thermal management. In order to mitigate the thermal challenges, the concept of system level thermal management should be applied and new modeling and simulation tools need to be developed. To develop and utilize system level thermal management technology, three key points are considered. Firstly, the performance changes of subsystems and components must be assessed at an integrated thermal system. It is because that each subsystem and component interacts with other subsystems or components and it can directly effects on overall system performance. Secondly, system level thermal management requirements and solutions must be evaluated early in conceptual design process as vehicle and propulsion system configuration decisions are being made. Finally, new component level thermal management technologies must focus on reducing heat generation and increasing the availability of heat sinks.

A Study for Efficient Foreign Object Debris Detection on Runways (활주로 FOD 탐지 효율화를 위한 기술적 고찰)

  • Lee, Kwang-Byeng;Lee, Jonggil;Kim, Donghoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.1
    • /
    • pp.130-135
    • /
    • 2014
  • FOD(Foreign Object Debris) has the potential threat to damage aircraft during critical phases of take-off and landing roll with some objects including metal on the runway. FOD can be found anywhere on an airport's air operation areas such as runway, taxiway and apron. It can lead to catastrophic loss of life and airframe, and increased maintenance and operating costs. In this paper, we defined FOD and surveyed its riskiness and necessity of automatic FOD detection system. We compared the requirements of the environment in Korea to the FAA advisory circular. Also we analyzed operation methods of FOD detection systems already installed at some airports. Based on the surveys mentioned above, we propose hybrid type of FOD detection system considering the environment in Korea which uses millimeter wave radar, optical camera and thermal imaging camera to detect FOD efficiently. In management approach, fixed type of the system should be installed for real-time monitoring, and mobile type of the system can be used additionally.

An Integrated System for Aerodynamic, Structural, and RF Stealth Analysis of Flying Vehicles (비행체 공력-구조-RF 스텔스 통합해석 시스템에 관한 연구)

  • Park, Min-Ju;Lee, Dong-Ho;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.86-91
    • /
    • 2008
  • An integrated multidisciplinary analysis and design system plays a critical role in the preliminary design of an aircraft. In this work a system based on the CATIA is developed for multidisciplinary computational design; aerodynamics, elasticity, and radar frequency stealth. Common data base of geometry and rectangular grids is generated and used for aerodynamic and structural analysis, while derivative triangular grids are generated for the RCS calculation. The panel method (PANAIR), FEM (NASTRAN), and PO technique are used for aerodynamic, structural, and RF stealth computations, respectively, and several additional algorithms are developed for the effective communication of the common data.

Design of Transparent Electromagnetic Absorbing Structure using Metal Grid Mesh Printing (Metal Grid Mesh 인쇄를 이용한 투명 전파 흡수구조 설계)

  • Yoon, Sun-Hong;Lee, Jun-Sang;Lee, In-Gon;Hong, Ic-Pyo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.294-301
    • /
    • 2016
  • In this paper, we designed the transparent circuit analog radar absorbing structure using printed metal grid mesh for enhanced optical transmittance. To obtain wideband electromagnetic absorption and enhanced optical transparency at X-band, we proposed the resistive FSS(Frequency Selective Surface) using printed metal mesh pattern on transparent glass with PEC(Perfect Electric Conductor) plane using ITO(Indium Thin Oxide) coating. We then fabricated the proposed structure to verify the simulation results obtained from commercial EM simulator. The comparisons between the simulation and measured results show good agreements. The results also show that the proposed radar absorbing structure can provide wideband reflection as well as better optical transparency. We can apply this proposed structure to the canopy of stealth aircraft and other stealth and security applications for visible transparency.

Study of Deep Reinforcement Learning-Based Agents for Controlled Flight into Terrain (CFIT) Autonomous Avoidance (CFIT 자율 회피를 위한 심층강화학습 기반 에이전트 연구)

  • Lee, Yong Won;Yoo, Jae Leame
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.2
    • /
    • pp.34-43
    • /
    • 2022
  • In Efforts to prevent CFIT accidents so far, have been emphasizing various education measures to minimize the occurrence of human errors, as well as enforcement measures. However, current engineering measures remain in a system (TAWS) that gives warnings before colliding with ground or obstacles, and even actual automatic avoidance maneuvers are not implemented, which has limitations that cannot prevent accidents caused by human error. Currently, various attempts are being made to apply machine learning-based artificial intelligence agent technologies to the aviation safety field. In this paper, we propose a deep reinforcement learning-based artificial intelligence agent that can recognize CFIT situations and control aircraft to avoid them in the simulation environment. It also describes the composition of the learning environment, process, and results, and finally the experimental results using the learned agent. In the future, if the results of this study are expanded to learn the horizontal and vertical terrain radar detection information and camera image information of radar in addition to the terrain database, it is expected that it will become an agent capable of performing more robust CFIT autonomous avoidance.

Shock Analysis of Mobile Power Supply Container for Radar with MIL-STD-810H (MIL-STD-810H를 적용한 레이더 전력공급용 이동식 컨테이너의 충격해석)

  • Kwon, Jaeeon;Shin, Dongwon;Hur, Jangwook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.569-576
    • /
    • 2021
  • Radar is a ground defense system that detects enemy aircraft and receives power from a mobile power supply in an emergency. Serious problems may occur if the equipment is damaged by impact during transportation for use. The US military standard MIL-STD-810H contains information on environmental tests such as shock and vibration applied to munitions. Therefore, in this study, the transient analysis of ANSYS 19.2 was performed using the impact data specified in MIL-STD-810H as an input value. Through this, the maximum stress generated in the impact environment of the mobile power supply container was derived, and the safety margin was calculated to confirm the reliability of the container.

Aircraft Motion Identification Using Sub-Aperture SAR Image Analysis and Deep Learning

  • Doyoung Lee;Duk-jin Kim;Hwisong Kim;Juyoung Song;Junwoo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.167-177
    • /
    • 2024
  • With advancements in satellite technology, interest in target detection and identification is increasing quantitatively and qualitatively. Synthetic Aperture Radar(SAR) images, which can be acquired regardless of weather conditions, have been applied to various areas combined with machine learning based detection algorithms. However, conventional studies primarily focused on the detection of stationary targets. In this study, we proposed a method to identify moving targets using an algorithm that integrates sub-aperture SAR images and cosine similarity calculations. Utilizing a transformer-based deep learning target detection model, we extracted the bounding box of each target, designated the area as a region of interest (ROI), estimated the similarity between sub-aperture SAR images, and determined movement based on a predefined similarity threshold. Through the proposed algorithm, the quantitative evaluation of target identification capability enhanced its accuracy compared to when training with the targets with two different classes. It signified the effectiveness of our approach in maintaining accuracy while reliably discerning whether a target is in motion.

Air Surveillance Using Mode-S Multilateration (모드-S 다변측정법을 이용한 항공감시기술 분석 및 전망)

  • Kim, Chang-Hwan;Han, Jae-Hyun;Kang, Ja-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.3
    • /
    • pp.9-20
    • /
    • 2010
  • Surveillance is an enabler of safety with respect to aircraft separation and as a consequence capacity and efficiency with respect to aircraft operations. The new emerging technology among modern civil aviation surveillance is Multilateration (MLAT) which would affect on the surveillance capacity with both side of surveillance signal and operational properties. Multilateration system is needed to receive the signal which must reach at least 3 ground receivers simultaneously and has the effect that will have on with the ultimate accuracy. In this paper, the principle and the system configuration are reviewed. And its benefit of development is considered with use in situations where it is difficult to locate tranditional radar. This MLAT requires no additional avionics equipment to supply service with more accurate and less expensive. And it is able to enhance performance that meets international standards and extend the investment of air navigation service providers with reducing environmental impact by utilizing a small footprint on existing structures. Finally, it can be added to meet a wide range of coverage requirements and future surveillance needs.

3D Visualization for Situational Awareness of Air Force Operations (공중작전 상황인식을 위한 3차원 가시화)

  • Kim Seong-Nam;Choi Jong-ln;Kim Chang-Hun;Lim Cheol-Su
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.6
    • /
    • pp.314-323
    • /
    • 2005
  • This paper proposes a real-time 3D visualization system for situational awareness of Air force operations. This 3D system of situational awareness supports a high-level commander of Air force during the war game operations. These situation aware supporting data such as the aircraft track data of radar, aircraft schedule database, map and satellite image data are integrated into one structured data and those are visualized as 3D structure. By using an Out-of-Core method, we can visualize a 3D huge data in real-time in mobile notebook environment. The experiment shows several examples of 3D visualization supporting situation awareness for Air force operation.

Consideration on the Electromagnetic Wave Absorption Properties of the Plasma for the Stealth Technology (은신기술을 위한 플라즈마의 전자기파 흡수 특성에 대한 고찰)

  • In, S.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.501-510
    • /
    • 2008
  • The stealth technology to conceal an aircraft from the vision of a radar have been accomplished by coating the surface with special paints absorbing the electromagnetic wave. Nowadays, researches to utilize characteristics of the plasma-wave interaction for realizing the stealth technology are actively progressed. In this paper, to investigate the physical feasibility of the plasma stealth, calculation results for the required conditions of the plasma cloaking on the aircraft flying in the air for showing the stealth function, using a flat non-magnetized non-uniform plasma model, are reported and discussed.