• Title/Summary/Keyword: Aircraft Performance Improvement

Search Result 119, Processing Time 0.029 seconds

Improvement on Performance Simulation Using Component Maps of Aircraft Gas Turbine Obtained from System Identification (시스템 식별로 구한 구성품 성능선도를 이용한 개선된 가스터빈 성능해석 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Ki, Ja-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.96-103
    • /
    • 2004
  • Sought a set of component performance lines from experiment data or some data supplied in the engine manufacturer to improve the traditional scaling method and suggested a map scaling method that construct component performance lines newly using polynomial equations of MATLAB program. In this study, applied technique that is proposed newly to PT6A-62 that verified technique that is proposed newly using experiment data of small. size turboshaft engine, and is actuality aircraft engine. In identification of the component maps of the turboprop engine, the simulated performance using the proposed scaling method was compared with the real engine performance data and the performance using the traditional scaling method.

A Study on Reliability, Safety Analysis and Related Performance Improvement of Avionics Equipment (항공전자장비 신뢰성, 안전성 분석 및 관련 성능 개선 방안 연구)

  • Seo, Joon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1220-1227
    • /
    • 2018
  • Avionics electronic equipment refers to the electronic equipment installed on an aircraft. Failure of avionics equipment can have a significant impact on aircraft operations as well as threaten the safety of pilots and passengers. Therefore, avionics electronic equipment is required to have higher reliability and safety than electronic equipment used for other purposes. Avionics equipment must consider various component selection and system design to meet reliability and safety-related requirements from the initial design stage. In this paper, we describe safety, reliability performance analysis method of avionics equipment, and introduce various design improvement methods that can be performed to meet safety requirement performance. Finally, the safety performance of the improved avionics equipment was reanalyzed and compared with the value before the improvement, the validity of the proposed design change was verified.

An agent-based cockpit task management system: a task-oriented pilot-vehicle interface

  • Kim, J.N.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.99-111
    • /
    • 1996
  • In today's highly automated aircraft, the role of the pilot has changed from an airplane controller to a system manager. As a system manager in a cockpit, today's pilot is in charge of a management-level activity called cockpit task management( CTM). According to earlier studies, pilot errors in performing CTM activities were significant factors in a large number of aircraft accidents and incidents. The primary objective of this research was to reduce CTM-related pilot errors. A prototype pilot- vehicle interface called the cockpit task management system (CTMS) was developed and its effectiveness in improving CTM performance was evaluated. After the CTMS was implemented, it was integrated into a PC-based flight simulator to perform an experiment to evaluate its effectiveness. Eight volunteer subjects were used to collect performance data. The results of the experiment indicated that a statistically significant improvement was observed when the subjects flew with the assistance of the CTMS.

  • PDF

A THREE-DIMENSIONAL UNSTRUCTURED FINITE VOLUME METHOD FOR ANALYSIS OF DROPLET IMPINGEMENT IN ICING (비정렬 격자 기반의 결빙 액적 해석을 위한 유한체적 기법)

  • Jung, K.Y.;Jung, S.K.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.41-48
    • /
    • 2013
  • Ice accretion on the solid surface is an importance factor in assessing the performance of aircraft and wind turbine blade. Changes in the external shape due to ice accretion can greatly deteriorate the aerodynamic performance. In this study, a three-dimensional upwind-type second-order positivity-preserving finite volume CFD scheme based on the unstructured mesh topology is developed to simulate two-phase flow in atmospheric icing condition. The code is then validated by comparing with NASA IRT experimental data on the sphere. The present results of the collection efficiency are found to be in close agreement with experimental data and show improvement near the stagnation region.

A Study on Performance Improvement of Distance Estimation Algorithm for Anti-Aircraft Weapon System (대공무기체계 표적거리예측 알고리즘 성능향상에 관한 연구)

  • Suh, Seung-bum;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.235-237
    • /
    • 2017
  • We suggest a way to improve the performance of a target distance estimation algorithm using Kalman Filter to compensate for the error that occurs when the target track information over the Combat Radio Network is lost.

  • PDF

Enhancing aerodynamic performance of NACA 4412 aircraft wing using leading edge modification

  • Kumar, B. Ravi
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.271-277
    • /
    • 2019
  • This work deals with designing the aircraft wing and simulating the flow behavior on it to determine the aerodynamically efficient wing design. A NACA 4412 airfoil is used to design the base wing model. A wing with a rectangular planform and the one with curved leading edge planform was designed such that their surface areas are the same. Then, a comprehensive flow analysis is carried out at various velocities and angle of attacks using computational fluid dynamics (CFD) and the results were interpreted and compared with the experimental values. This study shows that there is a significant improvement in the aerodynamic performance of the curved leading edge wing over the wing with rectangular planform.

DVI cable Improvement for Preventing MFD Abnormal Display of a Rotary-wing Aircraft (회전익 항공기 다기능시현기의 이상시현을 방지하기 위한 DVI 케이블 개선)

  • Kim, Young Mok;Jeong, Sang-Gyu;Cho, Jae Po;Choi, Doo-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.782-789
    • /
    • 2018
  • Multi-Function Display (MFD) of Korean Utility Helicopter (KUH) displays image information(navigation, flight, topographical and maintenance information) delivered from Mission Computer (MC) during flight operation. The abnormal display of MFD such as flickering phenomenon was identified in the system development. It was solved by improving the shielding performance of the DVI cable and changing the DVI cable installation path at the first mass production. However, it was occurred again when the aircraft was operated for one or two years after delivery. It was also identified in the evaluation process of the derivative helicopters. Therefore, a comprehensive review of the aircraft system level has been performed to solve the problem of MFD malfunction at first and then a design improvement plan was derived by improving the DVI cable. In this paper, the causes of MFD anomalies are analyzed and also the process of design improvement are summarized. The validity of the improvement has been verified through the DVI cable assembly comparison test, SIL/ground/flight test.

A Study on Improvement of Aircraft Handling Quality for Asymmetric Loading Configuration (비대칭 무장 형상의 조종성 개선에 관한 연구)

  • Kim, Chong-Sup;Bae, Myung-Whan;Hwang, Byung-Moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.106-112
    • /
    • 2005
  • Modern versions of supersonic jet fighter aircraft have several different weapon loading configuration to support air-to-air combat and air-to-ground delivery of weapon modes. These various aircraft loading conditions could result in asymmetric configurations to the aircraft once delivered. These asymmetric configurations could result in decreased handling qualities for the pilot maneuvering, stability, control issues and aerodynamic performance of the aircraft. In order to eliminate or decrease these adverse impacts on the pilot's ability, development of T-50 flight control law attempts to control the aircraft in both longitudinal and lateral-directional axes. Especially, the design of the lateral-directional roll axis control laws, utilizing a simple roll rate feedback structure and gains such as F-16, is developed for the T-50 aircraft to meet the aircraft's design requirements. Consequently, it is found that the improved control law decreases the roll-off phenomenon in lateral axes during pitch maneuver.

Design on High Efficiency and Light Composite Propeller Blade of High Speed Turboprop Aircraft (고속 터보프롭 항공기용 고효율 경량화 복합재 프로펠러 블레이드 설계 연구)

  • Kong, Chang-Duk;Lee, Kyung-Sun;Park, Hyun-Bum;Choi, Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.57-68
    • /
    • 2012
  • In this study, designs of the high efficiency composite propeller blade for a high speed turboprop aircraft, which will be used for a next generation regional commercial aircraft in Korea, are performed. Both the vortex theory and the blade element theory are used for preliminary aerodynamic design and performance analysis of the propeller. Then the aerodynamic design result is confirmed through performance analysis using a commercial CFD code, ANSYS. The carbon/epoxy composite materials is used, and the skin-spar-foam sandwich type structure is adopted for improvement of lightness and structural stability. Finally, it is investigated that the proposed propeller blade has high efficiency and structural safety through both aerodynamic and structural analysis and experimental test of a prototype propeller blade.

Full-Envelope Controller Switching Scheme Using Bumpless Transfer Implementation Algorithm (무충돌 전환 구현 알고리즘을 사용한 전비행영역 제어기 교체법)

  • Kim, Tae-Shin;Kwon, Oh-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.574-580
    • /
    • 2008
  • This paper has proposed a controller switching scheme for full-envelope aircraft control using the bumpless transfer implementation algorithm developed recently. This switching scheme has combined by proper rules the common existing method which switches the controller according to attitude and mach number of the aircraft with an optimization method which uses the cost function relating to bump phenomenon by means of controller switching criterion. This paper exemplifies the control performance improvement via simulations applied to a high performance aircraft benchmark problem in a wide operating range to test the proposed controller switching scheme.