DOI QR코드

DOI QR Code

A Study on Reliability, Safety Analysis and Related Performance Improvement of Avionics Equipment

항공전자장비 신뢰성, 안전성 분석 및 관련 성능 개선 방안 연구

  • Received : 2018.06.25
  • Accepted : 2018.08.14
  • Published : 2018.09.30

Abstract

Avionics electronic equipment refers to the electronic equipment installed on an aircraft. Failure of avionics equipment can have a significant impact on aircraft operations as well as threaten the safety of pilots and passengers. Therefore, avionics electronic equipment is required to have higher reliability and safety than electronic equipment used for other purposes. Avionics equipment must consider various component selection and system design to meet reliability and safety-related requirements from the initial design stage. In this paper, we describe safety, reliability performance analysis method of avionics equipment, and introduce various design improvement methods that can be performed to meet safety requirement performance. Finally, the safety performance of the improved avionics equipment was reanalyzed and compared with the value before the improvement, the validity of the proposed design change was verified.

항공전자장비는 항공기에 탑재되는 전자장비를 의미한다. 항공전자장비의 고장은 항공기 운용에 중대한 영향을 미칠 뿐만 아니라 조종사와 승객의 안전까지 위협할 수 있다. 이에 항공전자장비는 타 용도로 사용되는 전자장비들 보다 높은 신뢰성과 안전성을 가지도록 요구도로 규정되어 있다. 항공전자장비는 설계 초기 단계에서부터 안전과 관련된 요구사항 충족을 위해 부품 선정과 시스템 설계를 고려해야 한다. 본 논문에서는 항공전자장비의 안전성, 신뢰성 성능 분석 방법을 설명하고, 안전 요구 성능 충족을 위해 수행할 수 있는 여러 설계 개선 방법을 실제 항공전자장비 개발 사례를 들어 소개한다. 마지막으로 설계 개선된 항공전자장비의 안전 성능 수치를 재분석하고, 개선 전 값과 비교하여 제시한 설계 변경의 유효성을 입증하였다.

Keywords

References

  1. X. G. Ge, Z. X. Tao and C. Y. Tian, "Analysis of Development Trend of Avionics System," Advanced Materials Research, vol. 850-851, pp. 1102-1105, Dec. 2013. https://doi.org/10.4028/www.scientific.net/AMR.850-851.1102
  2. Su-woon Hong and Young-kil Kim, "Design of TM/TC data protocol of Military Unmanned Aerial Vehicles," Journal of the Korea Institute of Information and Communication Engineering, vol.22, no.3, pp.506-512, Mar. 2018. https://doi.org/10.6109/JKIICE.2018.22.3.506
  3. G. Chandrika, "Study on Software Reliability and Reliability Testing," Asia-pacific Journal of Convergent Research Interchange, vol.1, no.1, pp.7-20, Mar. 2015. http://dx.doi.org/10.21742/APJCRI.2015.03.02.
  4. I. T. Cho, "A Study on Reliability Growth through Failure Analysis by Operational Data of Avionics Equipments," Journal of Society of Korea Industrial and Systems Engineering, vol. 36, no 4, pp. 100-108, Dec. 2013. https://doi.org/10.11627/jkise.2013.36.4.100
  5. MIL-STD-756, Military Standard Reliability Modeling and Prediction, Department of Defense, United States of America, Nov. 1981.
  6. MIL-HDBK-217, Military Handbook Reliability Prediction of Electronic Equipment, Department of Defense, United States of America, Jan. 1990.
  7. F. Y. Xiang and Y. Li, "Fault-Tree Analysis for Power Gird Emergency Logistics Systems under Large-Scale Natural Disaster," Advanced Materials Research, vol. 986, pp. 311-314, Jan. 2014.
  8. E.P. Zafiropoulos and E. N. Dialynas, "Reliability prediction and failure mode effects and criticality analysis of electronic devices using fuzzy logic," International Journal of Quality & Reliability Management, vol. 22, pp. 183-200, Feb. 2005. https://doi.org/10.1108/02656710510577233
  9. S. Kabir, "An overview of fault tree analysis and its application in model based dependability analysis," Expert Systems with Applications, vol. 77, pp. 114-135, July 2017. https://doi.org/10.1016/j.eswa.2017.01.058
  10. W. C. Lu, "Design and Development of a Multifunctional Flight Display System," Applied Mechanics and Materials, vol. 664, pp. 293-297, Oct. 2014. https://doi.org/10.4028/www.scientific.net/AMM.664.293