• Title/Summary/Keyword: Aircraft Performance

Search Result 1,117, Processing Time 0.024 seconds

Numerical investigations on winglet effects on aerodynamic and aeroacoustic performance of a civil aircraft wing

  • Vaezi, Erfan;Fijani, Mohammad Javad Hamedi
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.303-330
    • /
    • 2021
  • The paper discusses the effect of the winglets on the aerodynamic and aeroacoustic performance of Boeing 737-800 aircraft by numerical approach. For this purpose, computational fluid dynamics and fluent commercial software are used to solve the compressible flow governing equations. The RANS method and the K-ω SST turbulence model are selected to simulate the subsonic flow around the wing with acceptable accuracy and low computational cost. The main variables of steady flow around the simple and blended wing in constant atmospheric conditions are computed by numerical solution of governing equations. The solution of the acoustic field has also been accomplished by the broad-band acoustic source model. The results reveal that adding a blended winglet increases the pressure difference near the wingtip,which increases the lift force. Also, the blended winglet reduces the power and magnitude of vorticities around the wingtip, which reduces the wing's drag force. The effects of winglets on aerodynamic forces lead to a 3.8% increase in flight range and a 3.6% increase in the maximum payload of the aircraft. Also, the acoustic power level variables on the surfaces and fields around the wing have been investigated integrally and locally.

A Study on the Analysis Method of Noise Standard Reflecting Aircraft Performance according to Flight Condition - Focusing on A330-300 at Gimpo International Airport - (비행조건에 따른 항공기 성능을 반영한 소음기준 분석방법 연구 - A330-300 항공기와 김포국제공항을 중심으로 -)

  • Myeongsik Lee;Sungwoo Jang;Jun ho Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.1
    • /
    • pp.37-42
    • /
    • 2023
  • In an effort to reduce aircraft noise, noise abatement areas are designated and notified, and noise abatement procedures are implemented. However, residents in noise abatement areas are increasingly complaining about the increase in noise, and airlines are exceeding the criteria for noise. In this study, A330-300 airplane set flight conditions that are predicted to generate the most noise when taking off 32 runway at Gimpo International Airport, and predicted the noise as the NPD curve of the INM and AEDT programs. As a result of the analysis, it was considered that the noise at a specific point would generate higher noise than the noise criteria. Therefore, to avoid exceeding aircraft noise criteria at a particular point, supplementing the departure procedures by reflecting aircraft performance under flight conditions would reduce complaints from both airlines and local residents.

Modification and Installation Design of Airframe Structures for Performance Improved Aircraft (성능개량 항공기의 기체구조물 개조 및 장착설계)

  • Dae Han Bang;Hyeon Seok Lee;Min Soo Lee;Min Ho Lee;Jae Man Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.87-94
    • /
    • 2023
  • This paper addresses the installation and modification design of airframe structures for new and modified equipment installations that are essential for aircraft performance improvement. Typical performance improvement equipment mounted on the exterior of the aircraft include antenna, radar, electro-optical/infrared (EO/IR), and self-protection system equipment, which require structural reinforcement, modification, and mounting design of the green aircraft for operation. In the interior of the aircraft, console and rack structures are modified or added according to user operation requirements. In addition, this is accompanied by the installation design of equipment to be replaced and added for performance improvement, and the according modification of environmental control system components for internal cooling. The engineering process and cases in which airworthiness was verified through the detailed design of airframe structures with structural integrity, operability, and maintainability of performance-improved aircraft are presented.

Navigation Performance Analysis Method for Integrated Navigation System of Small Unmanned Aerial Vehicles

  • Oh, Jeonghwan;Won, Daehan;Lee, Dongjin;Kim, Doyoon
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.207-214
    • /
    • 2020
  • Currently, the operation of unmanned aerial vehicle (UAV) is regulated to be able to fly only within the visible range, but in recent years, the needs for operation in the invisible area, in the urban area and at night have increased. In order to operate UAVs in the invisible area, at night, and in the urban area, a flight path for UAVs must be prepared like those operated by manned aircraft, and for this, it is necessary to establish an unmanned aircraft system traffic management (UTM). In order to establish the UTM, information on the minimum separation distance to prevent collisions with UAVs and buildings is required, and accordingly, information on the navigation performance of UAVs is required. In order to analyze the navigation performance of an UAV, total system error (TSE), which is the difference between the planned flight path and the actual location of the UAV, is required. If the collected data are insufficient and classification according to integrity, independence, and direction is not performed, accurate navigation performance is not derived. In this paper, propose a navigation performance analysis method of UAV that is derived TSE using flight data and modeled with normal distribution, analyze performance.

The Study of Propulsion Performance Model for Reciprocating Engine Aircraft (소형 왕복엔진 항공기용 추진성능모델 연구)

  • Choi, Won;Kim, Kwang-Hae;Kim, Ji-Hong;Lee, Won-Joong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.578-585
    • /
    • 2012
  • Reciprocating engine is widely used for small propeller driven aircraft. because it is the superior efficiency and low price. Currently, reciprocating engine is used for the development of KC-100, LSA, PAV, UAV in domestic. In this study, Naturally aspirated engine and turbocharger engine performance model is developed. The propeller is designed and analyzed at cruise condition of reciprocating engine aircraft using optimum method, the propeller performance model is developed. The Integrated propulsion performance model is developed, through the matching with engine and propeller performance model, for small reciprocating engine aircraft performance analysis.

  • PDF

Photogrammetry-based reverse engineering method for aircraft airfoils prediction

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.331-344
    • /
    • 2021
  • Airframe internal and external specifications are the product of intensive intellectual efforts and technological breakthroughs distinguishing each aircraft manufacturer. Therefore, geometrical information characterizing aircraft primary aerodynamic surfaces remain classified. When attempting to model real aircraft, many members of the aeronautical community depend on their personal expertise and generic design principles to bypass the confidentiality obstacles and sketch real aircraft airfoils, which therefore vary for the same aircraft due to the different designers' initial assumptions. This paper presents a photogrammetric shape prediction method for deriving geometrical properties of real aircraft airframe by utilizing their publicly accessible static and dynamic visual content. The method is based on extracting the visually distinguishable curves at the fairing regions between aerodynamic surfaces and fuselage. Two case studies on B-29 and B-737 are presented showing how to approximate the sectional coordinates of their wing inboard airfoils and proving the good agreement between the geometrical and aerodynamic properties of the replicated airfoils to their original versions. Therefore, the paper provides a systematic reverse engineering approach that will enhance aircraft conceptual design and flight performance optimization studies.

Study on Procedures and Items for Development Flight Test of UAV (무인항공기 개발비행시험을 위한 절차 및 항목에 대한 연구)

  • Park, Dea-Jin;Yang, Jun-Mo;Kim, Bong-Gyun;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.81-86
    • /
    • 2016
  • Unmanned aerial vehicles(UAVs) are increasingly used in civilian areas as well as in military areas due to the technological advancement of UAVs. In response to the increasing demand in UAVs, many studies are under way to integrate the airspace between manned aircraft and UAV. The development of flight test can secure the performance and flight characteristics of the designed aircraft. And the capability of research and development can be expanded through the accumulation of technical data. It is also essential to verify the correct performance and characteristics of development aircraft themselves. In this paper, we propose development flight test procedures and items for civilian UAVs.

A Study on the Longitudinal Flight Control Law of T-50 (T-50 세로축 비행제어법칙 설계에 관한 연구)

  • Hwang Byung-moon;Kim Seong-Jun;Kim Chong-sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.963-969
    • /
    • 2005
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modem version supersonic jet fighter aircraft. The flight control system utilizes RSS criteria in both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. The T-50 advanced trainer employs the RSS concept in order to improve the aerodynamic performance and the flight control law in order to guarantee aircraft stability, The T-50 longitudinal control laws employ the dynamic inversion and proportional-plus-integral control method. This paper details the design process of developing longitudinal control laws for the RSS aircraft, utilizing the requirement of MIL-F-8785C. In addition, This paper addresses the analysis of aircraft characteristics such as damping, natural frequency, gain and phase margin about state variables for longitudinal inner loop feedback design.

3차원 물체인식을 위한 신경회로망 인식시트메의 설계

  • 김대영;이창순
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.2 no.1
    • /
    • pp.73-87
    • /
    • 1997
  • Multilayer neural network using a modified beackpropagation learning algorithm was introduced to achieve automatic identification of different types of aircraft in a variety of 3-D orientations. A 3-D shape of an aircraft can be described by a library of 2-D images corresponding to the projected views of an aircraft. From each 2-D binary aircraft image we extracted 2-D invariant (L, Φ) feature vector to be used for training neural network aircraft classifier. Simulations concerning the neural network classification rate was compared using nearest-neighbor classfier (NNC) which has been widely served as a performance benchmark. And we also introduced reliability measure of the designed neural network classifier.

NUMERICAL INVESTIGATION OF SHOCK-BUFFET ON TRANSPORT AIRCRAFT WITH CHANGING THE POSITION OF NACELLE/PYLON (항공기 Nacelle/pylon 위치에 따른 Shock-Buffet 현상의 수치적 연구)

  • Kim, S.H.;Yee, K.J.;Oh, S.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.69-76
    • /
    • 2014
  • The shock buffet on a transonic transport aircraft are negative factors that reduce the aerodynamic performance of aircraft. The parametric studies were performed for position of nacelle/pylon to estimate the trend of flow mechanism under the wing that affects shock buffet. To generate external mesh of aircraft configuration that change the position of nacelle, snappyHexMesh provided in OpenFOAM was applied. Implicit density-based solver(ISAAC) was used for flow analysis. The change of nacelle position along horizontal direction dynamically affected the aerodynamic performance of transonic transport aircraft as comparing that of vertical direction. As a result of the parametric study of nacelle/pylon position, it was confirmed that the optimal position of nacelle can be obtained by aerodynamic design.