• Title/Summary/Keyword: Aircraft Manufacturing

Search Result 271, Processing Time 0.018 seconds

A Study on Design Method and Control of Blimp-4 Rotor Craft (Blimp형 4 Rotor Craft의 설계방법에 관한 연구)

  • 박윤수;이호길;김진영;원대희;박종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.996-1000
    • /
    • 2003
  • In this paper, Fly robot with electric power, a kind of Unmanned aerial vehicle (UAV), is considered as an autonomous hovering platform, capable of vertical lift-off, landing and stationary hovering. This aircraft has four rotor and DC motors of electrical Power, which is capable of omni-direction for indoor application. In the earlier days of vertical flight experimentation developers looked at the intuitively easy control functionality of 4 rotor designs. But we need to obtain design method of suitable structures and adequate components because the existing prototypes of 4 rotor-craft don't analyze the propeller, motor characteristic and propose a methodology to optimize this system. In this paper, we will show the new 4 rotor craft with blimp, analyze design and manufacturing method of 4 rotor craft system. Also we prove propriety of our design and manufacturing method by being based on thrust and motor experiment.

  • PDF

Study on the Effect of Gas Pressure on Bottle Wall Thickness in the Blow Molding Process (블로우 몰딩 공정에서 분사 압력이 성형 두께에 미치는 영향에 관한 연구)

  • Kim, Dong-Hwan;Seol, Sang-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.36-44
    • /
    • 2020
  • This study analyzed the deformation behavior of the high density polyethylene (HDPE) bottle in the blow molding process. We carried out finite element (FE) simulations using ANSYS Polyflow. First, the axisymmetric model was executed by 2D FE-simulation to determine the change of bottle wall thickness during the molding process. Then, the square model of the bottle was executed by 3D FE-simulation to gauge the effects of gas pressure on the change of wall thickness. The experiment results showed that the FE-simulations were able to upgrade the quality of the HDPE bottle in the blow molding process. These results can be used as guidance in adjusting gas pressure, as well as be extended for further study to determine process parameters such as temperatures, forming velocity, parison shape, etc.

Drilling Characteristics of Glass Fiber Reinforced Polyester (유리섬유 강화 폴리에스터의 드릴가공 특성)

  • 김성일
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.90-95
    • /
    • 2000
  • Today fiber composite materials are routinely used in such wide applications as ships automobiles aircraft space vehi-cles containers sporting goods and appliances. The current knowledge of machining glass fiber reinforced polyester com-posites unfortunately is inadequate for its optimum utilization in many applications. Therefore This paper deals with drilling characteristic of glass fiber reinforced polyester composites. In the drilling of glass fiber reinforced polyester the quality of the cut surfaces is strongly dependent on the drilling parameters. drilling tests were carried out on glass fiber reinforced polyester using standard HSS tools. The material containing random chopped strand fibers and woven roving was fabricated by hand lay-up The entrance and exit surface of the holes was examined. The cutting force was also mea-sured to analyze the drilling characteristics,.

  • PDF

A Study on the Development of a Compact Gun Drill Machine (소형 Gun Drill Machine 개발에 관한 연구)

  • Oh, Jin-Soo;Kang, Dong-Myeong;Park, Kwang-Hoon;Namkoong, Chai-Kwan;Woo, Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.58-63
    • /
    • 2007
  • A compact gun drill machine was developed to improve productivity and economical efficiency for small and medium enterprise tool makers. Gun drilling works are mainly using at molding, automobile, aircraft industry and special tool makers to make deep holes. As gun drill machines are very expensive and big burden for small tool makers, so that works used to execute through outside orders but it was required lot of cost too. Most of gun drill machines are providing for high volume and large capacity enterprises. In order to use for small and medium enterprises that compact gun drill machine was designed and developed. It could be improved product quality, productivity and manufacturing cost for small and medium enterprises by using this machine.

Quantitative Analysis and Mathematical Model for Spindle Vibration of the End-Milling by Design of Experiment (실험계획법을 이용한 엔드밀 가공시 주축 진동에 대한 정량적 분석 및 수학적 모형)

  • Park, Heung-Sik;Lee, Sang-Jae;Bae, Hyo-Jun;Jin, Dong-Kyu;Kim, Young-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.37-42
    • /
    • 2004
  • End-milling have been widely used in aircraft, automobile part and moulding industry. However, various working factors such as spindle speed, feed rate and depth of cut in end-milling have an effect on spindle vibration. There it is demanded the quantitative analysis of spindle vibration in order to get the optimum surface roughness. This study was carried out to analyze an influence of working factors on spindle vibration by design of Experiment. The results are shown that mathematical model of regression equation for an influence of working factors on vibration acceleration of spindle in end-milling by regression analysis is presented.

  • PDF

Searching Optimal Cutting Condition for Surface Roughness In Turning Operation on Inconel 718 using Taguchi Method (다구찌 방법을 이용한 Inconel 718 소재의 선삭가공에서 표면거칠기 최적화)

  • Cha, Jin-Hoon;Han, Sang-Bo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.295-300
    • /
    • 2010
  • Inconel 718 alloy, widely used as material of aircraft engine, has a good mechanical property in high temperature, strong anti-oxidation characteristics in oxidated current over $900^{\circ}C$, and also is not easily digested in the air containing sulfur, therefore, its usage as mechanical component is expanding rapidly. Even though Inconel alloy 718 is difficult to machine, it requires highly precise processing/machining to sustain its component quality of high accuracy. In this paper, general turning operation conditions arc tested to select the best cutting process condition by measuring surface roughness through implementing experiments with orthogonal array of cutting speed, feeding speed and cutting depth as processing parameters based on the Taguchi method. Optimal turning operation conditions are extracted from the proposed experimental models.

The Vibration Characteristic of Carbon-Carbon Composite Material due to Tensile Loading (인장하중에 따른 Carbon/Carbon복합재의 진동특성)

  • Oh, Seung-Gyu;Kwac, Lee-Ku;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.740-744
    • /
    • 2011
  • Carbon-carbon composite material is the reinforced carbon fiber. Because of its high strength, elasticity and the excellent heat-resisting property in high temperature, carbon-carbon composite material has been used in many fields such as aerospace and automotive industries, etc. Especially, aircraft brake discs used at aerospace can be cracked due to its fatigue and vibration under various loading condition. This research is focused on the influence of the vibration of carbon-carbon composite material by using accelerometer with impact hammer excitation. And the change of vibration mode will be known by applying tensile loading test.

Optimal Cutting Conditions of Surface Roughness for Inconel 718 Alloy in Turning Operation (선삭가공시의 인코넬 718합금의 표면거칠기 최적 절삭조건)

  • Park, Jong-Min;Choi, Won-Sik;Kwon, Soon-hong;Cha, Jinhoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.48-53
    • /
    • 2009
  • Inconel 718 alloy, widely used as material of aircraft engine, has a good mechanical property in high temperature, strong anti-oxidation characteristics in oxidated current over $900^{\circ}C$, and also is not easily digested in the air containing sulfur, therefore, its usage as mechanical component is expanding rapidly. Even though Inconel alloy 718 is difficult to machine, it requires highly precise processing/machining to sustain its component quality of high accuracy. In this paper, general turning operation conditions are tested to select the best cutting process condition by measuring surface roughness through implementing experiments with orthogonal array of cutting speed, feeding speed and cutting depth as processing parameters based on the Taguchi method. Optimal turning operation conditions are extracted from the proposed experimental models.

  • PDF

Alignment Measuring Apparatus for B-axis of Separated Multi-axis Machine (분리된 다축 장비의 B축 얼라인먼트 측정 장치에 관한 연구)

  • Cheon, Kyeong-Ho;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.47-54
    • /
    • 2018
  • These days, the aerospace industry uses larger machining parts and assembly parts than those in the past. The assembly machines also show the same trend. This study is concerned with the alignment measuring apparatus for the B-axis of a separated multi-axis machine. The alignment measuring apparatus is widely installed for assembly machines in the aircraft assembly process. The alignment measuring apparatus consists of a swivel part and a measuring part. This is a new conceptual idea under patent. All elements of the alignment measuring apparatus are analyzed with the FEM. The analyzed result shows that the alignment measuring apparatus is high in accuracy with stability and steady deformation.

A Study on Surface Integrity in Hard Turning (고경도 선삭에서의 표면품위에 관한 연구)

  • Lee, Han Gyo;Shin, Hyung Gon;Yoo, Seung Hyeon;Kim, Tae Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.871-877
    • /
    • 2012
  • New materials widely used for automobile related industry, aircraft, space development area are mostly high hardness materials. The hardness value of some hardened materials is over HRC45 and machining of this hardened materials is called as hard turning. Hard turning has its advantage on processing flexibility, cycle time and tool cost reduction. Also this process obtains high efficiency in processing and precise surface roughness through application of the CBN tools. In hard turning process with CBN tool, surface integrity is the important factor for considering the design of machine part and component under high stress and load conditions. A purpose of this study is to analyze optimal condition in hard turning process of AISI 52100 steel (HRC62) with high CBN and low CBN on turning characteristics, tool wear mechanism comparison and surface integrity.