• Title/Summary/Keyword: Aircraft Landing Gear

Search Result 70, Processing Time 0.021 seconds

Dynamic Load Analysis of Aircraft Landing Gear (항공기 착륙장치 동하중 해석)

  • Shin, Jeong-Woo;Kim, Tae-Uk;Hwang, In-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Role of landing gear is to absorb energy which is generated by aircraft ground maneuvering and landing. Generally, in order to absorb the impact energy, oleo-pneumatic type shock absorber is used in aircraft landing gear. Oleo-pneumatic type shock absorber has a good energy absorption efficiency and is light in weight because structure of oleo-pneumatic type shock strut is relatively simple. In this study, dynamic load analysis for swinging arm type landing gear was performed to predict landing loads. Modeling of landing gear was conducted with MSC.ADAMS, and dynamic landing loads were analyzed based on ADS-29. Optimum landing loads were generated through adjustment of damping orifice and the analysis results were presented with various aircraft attitude.

  • PDF

Study on Vibration Characteristic Improvement of Aircraft Landing Gear Handle (항공기용 착륙장치 핸들의 진동 특성 개선에 관한 연구)

  • Kang, Gu Heon;Ahn, Jong Moo
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-65
    • /
    • 2018
  • The landing gear (L/G) handle of an aircraft is an essential piece of equipment for aircraft take-off and landing. The bracket in the landing gear handle was fractured during a vibration test when developing the landing gear handle. This paper summarizes the vibration test procedures performed during landing gear handle development. A cause analysis, design improvements, and verification results of the fault in the vibration test are also provided.

Stress Analysis of Plate-Spring-Type Landing Gear Materials (판스프링형 랜딩기어의 재질에 따른 응력 해석)

  • Kim, Kyeong-Hwan;Lee, Young-Shin;Han, Jae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.303-308
    • /
    • 2014
  • Aircraft are an indispensable mode of modern transportation. They are also used as in a wide variety of other fields. For example, aircraft are used for accommodating passengers, carrying freight, and for military reconnaissance. Aircraft ground operations include landing and taking off. During landing, a higher load is applied to the landing gear than during takeoff. The landing gear should absorb impact energy and prevent damage to the main body of the aircraft in the case of an accident. In this study, simulations were performed for two types of plate-spring-type landing gear: that made of composite materials and that constructed with aluminum. The structural safety of landing gear made of each material was also evaluated.

Spin-up, Spring-back Load Analysis of KC-100 Nose Landing Gear using Explicit Finite Element Method (외연적 유한요소법을 이용한 KC-100 전방착륙장치 Spin-up, Spring-back 하중 해석)

  • Park, Ill-Kyung;Kim, Sung-Jun;Ahn, Seok-Min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.51-57
    • /
    • 2011
  • The spin-up and the spring-back are most severe load cases in the aircraft landing gear design. These load cases are caused by reciprocal action of complex physical phenomenon such as the friction between a tire and ground, inertia of the rotation of a tire and the flexibility of a landing gear structure. Generally, the empirical formula or the theoretical formula is used to calculate the spin-up and spring-back load in the early stage of the development program of the aircraft landing gear. After the materialization of the design of a landing gear, spin-up and spring-back load are acquired by the free drop test. In this study, the spin-up and the spring-back load of the rubber shock absorber type KC-100 nose landing gear are calculated by the explicit finite element analysis. Through this analysis, more accurate and realistic spin-up and spring back loads could be applied to the early phase of the development of the aircraft landing gear.

On the Approximate Solution of Aircraft Landing Gear under Nonstationary Random Excitations (비정상 랜덤 가진력을 받는 항공기 착륙장치의 응답해석 기법연구)

  • 황재혁;유병성;공병식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.345-351
    • /
    • 1997
  • The motion of an aircraft landing gear over rough runway at variable speed is nonstationary. hi this paper, a method for the computation of nonstationary response variance is presented which uses a state space form for the combination of landing gear and runway excitation. The dynamic characteristics of the landing gear under nonstationazy random excitations has also been analyzed using the proposed method. The formulation is for linear systems of arbitrary order and allows any deterministic velocity history.

  • PDF

Dynamic Analysis of Aircraft Landing Gear under Nonstationary Random Excitations (비정상 랜덤 가진력을 받는 항공기 착륙장치의 동특성 해석)

  • 황재혁;유병성;박명호
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.251-259
    • /
    • 1998
  • The motion of an aircraft landing gear over rough runway at variable speed is nonstationary. In this paper, a method for the computation of nonstationary response variance is presented which uses a state space form for the combination of landing gear and runway excitation. The dynamic characteristics of the landing gear under nonstationary random excitations has also been analyzed using the proposed method. The formulation is for linear systems of arbitrary order and allows any deterministic velocity history. It has been found by a series of simulation that correlation parameter, damping coefficients of landing gear and tire, and velocity profiles play a prominent role on the dynamic characteristics.

  • PDF

ACN Estimation for Medium-class Aircraft (중형수송기 Aircraft Classification Number 예측)

  • Chung, Jin-Deog;Bae, Joong-Won;Lee, Hae-Chang
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.3
    • /
    • pp.34-38
    • /
    • 2010
  • ACN(Aircraft Classification Number) is allocated by marketing group during early stage of aircraft design phase and is a critical parameter to decide whether the designed aircraft can be landed or not in a certain airport. The loading on the main landing gear wheels, selection of main landing gear tire and estimation of ACNs for flexible and rigid pavements were done for the proposed medium-class aircraft. The estimated ACN values are compared with the similar class aircraft. And PCN(Pavement Classification Number) values of airport in Korea are surmmarized. Results showed that the currently proposed medium-class aircraft can land any airport in Korea.

  • PDF

Drop Test for the UAV Landing Gear Performance Verification (무인정찰기 착륙장치 성능입증을 위한 낙하시험)

  • Shin, Jeong-Woo;Lee, Seung-Gyu;Yang, Jin-Yeol;Kim, Sung-Joon;Hwang, In-Hee;Chung, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.250-254
    • /
    • 2011
  • Main role of landing gear is to absorb the energy which is generated by aircraft lanidng and ground maneuvering. Generally, in order to absorb the impact energy during landing, oleo-pneumatic type shock absorber is used for aircraft landing gear. Oleo-pneumatic type shock absorber has a good energy absorbing efficiency and is light in weight because its structure is relatively simple. For the landing gear development, it is necessary to conduct drop test in order to verify shock absorbing performance. In the drop test, first, gas spring curve verification tests are conducted. Then, limit and reserve energy absorption drop tests are performed based on the STANAG 4671. The drop tests results with performance analysis results are presented.

  • PDF

Fatigue Test and Evaluation of Landing Gear (착륙장치 피로 시험평가)

  • Lee, Sang-Wook;Lee, Seung-Gyu;Shin, Jeong-Woo;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee;Lee, Je-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1181-1187
    • /
    • 2012
  • For the fatigue design of aircraft landing gear, the safe-life approach is applied. Structural defects such as cracks or detrimental deformations should not occur under the fatigue load spectrum depicting the entire lifetime usage of the aircraft. In the design phase, the fatigue life of the landing gear is estimated analytically by adopting the stress-based approach because the fatigue of aircraft landing gear is generally high-cycle fatigue. This utilizes S-N curves that are factored to produce design curves that account for the scatter and surface finish of the material. In the test and evaluation phases, a fatigue test should be conducted for full-scale landing gear to substantiate the fatigue design requirement in the end. In this study, the procedure for the fatigue test and evaluation of aircraft landing gear is presented with real application cases.

Dynamic Analysis of Aircraft Landing Gear under Nonstationary Random Excitations (비정상 랜덤 가진력을 받는 항공기 착륙장치의 동특성 해석)

  • 황재혁;유병성;박명호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.60-68
    • /
    • 1997
  • The motion of an aircraft landing gear over rough runway at variable speed is nonstationary. In this paper a method for the computation of nonstationary response variance is presented which uses a state space form for the combination of landing gear and runway excitation. The dynamic characteristics of the landing gear under nonstationary random excitations has also been analyzed using the proposed method. The formulation is for linear systems of arbitrary order and allows any deterministic velocity history. It has been found by a series of simulation that correlation parameter, damping coefficients of landing gear and tire, and velocity profiles plays a prominent role on the dynamic characteristics.

  • PDF