• Title/Summary/Keyword: Aircraft Armament

Search Result 9, Processing Time 0.021 seconds

Aerodynamic Effects of Gas-Air Mixture on the Aircraft's Armament System (항공무장 시스템에서 가스-공기 혼합체의 공력영향성 연구)

  • Kang, Tae-Woo;Kim, Myoung-Soo;Kim, Young-Hak;Kim, Seung-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.788-793
    • /
    • 2017
  • This military aircraft requires the compatibility evaluation of armed installations in accordance with guidelines and standards. In order to ensure the influence of gas-air mixtures caused by gunfire of the supersonic aircraft, CFD analysis of internal and external flows was performed and the results carried out and discussed. The low velocity vortex was formed due to the shape of the Gun Port, after firing the gas-air mixture was evacuated to the outside flow, where it moved to the front of the aircraft and soon merged with the aircraft flow field.

A Study on Deep Learning based Aerial Vehicle Classification for Armament Selection (무장 선택을 위한 딥러닝 기반의 비행체 식별 기법 연구)

  • Eunyoung, Cha;Jeongchang, Kim
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.936-939
    • /
    • 2022
  • As air combat system technologies developed in recent years, the development of air defense systems is required. In the operating concept of the anti-aircraft defense system, selecting an appropriate armament for the target is one of the system's capabilities in efficiently responding to threats using limited anti-aircraft power. Much of the flying threat identification relies on the operator's visual identification. However, there are many limitations in visually discriminating a flying object maneuvering high speed from a distance. In addition, as the demand for unmanned and intelligent weapon systems on the modern battlefield increases, it is essential to develop a technology that automatically identifies and classifies the aircraft instead of the operator's visual identification. Although some examples of weapon system identification with deep learning-based models by collecting video data for tanks and warships have been presented, aerial vehicle identification is still lacking. Therefore, in this paper, we present a model for classifying fighters, helicopters, and drones using a convolutional neural network model and analyze the performance of the presented model.

Deployment Actuator Logic Design for Enhancing Aircraft Armament Stability (항공무장 안정성 향상을 위한 날개 전개 구동기의 작동로직 설계)

  • Seonjae Jeon;Kidu Lee;Jinwoo Lee;Hyodeuk An;Wonjong Song;Jinhyeok Lee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.277-284
    • /
    • 2024
  • For the high reliability of guidance weapon, it is important to maintain the stable supply voltage for guidance system while the bomb is gliding. However, the DC motor drive for guidance control in the low temperature can lead to the critical voltage drop due to a large inrush current. In this paper, we propose the wing deployment logic design to enhance the guidance system stability. To derive the stable drive logic based on PWM, we controlled the duty cycles for input voltage of DC motor in low temperature. The initial duty cycle was set to 40 % to relieve the inrush current. Moreover, the proper time, which is less than 1 second for controlling duty cycles, was determined by the iterative wing deployments of guidance kit. Finally, the validity of proposed logic was confirmed from the result the maximum voltage drop for the wing deployment was decreased by 23 %.

Analysis of the Correlation between Armament/Store Integration Criteria and Aircraft Launch Missile Development Process (무장/장착물 통합 기준과 항공기 발사 순항 유도무기 개발 프로세스의 상관성 분석)

  • Choi, Seok-min;Lee, Jong-hong;Kim, Ji-min;Lee, Seoung-pil;Jung, Jae-won
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.84-89
    • /
    • 2018
  • Due to the development of domestic technology, a variety of aircraft launch weapons have been developed, and the importance of aircraft-store integration certification is increasing. The aircraft-Store integration certification is to certify compliance with the armaments/stores integration criteria set out in the Standard ACC and to prove that there is no problem with the safety flight. Therefore, it is necessary to reflect the requirements of the aircraft in the store development process to reduce the design change requirement in the compatibility verification stage. In this paper, the relationship between the Standards ACC, aircraft-store compatibility reference document MIL-HDBK-1763, and the development process of cruise guided weapons have been analyzed. As a result of the analysis, it was concluded that the design changes in the aircraft-store integration certification stage could be reduced if the aerodynamic and structural design requirements were reflected from the conceptual design stage.

Aerodynamic Effects of Gun Gas on the Aircraft's Armament System (항공기 무장시스템 Gun Gas 공력특성에 관한 연구)

  • Choi, Hyoung Jun;Kim, Seung Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.623-629
    • /
    • 2020
  • This study examined the airflow field around a gun port on the flight condition of gunfire to verify the aircraft performance and safety effects and gun gas rate, path according to the options of diverter configuration. The gun port diverter not only effectively lowered the heat generated by gunfire but also effectively discharged the gun gas upwards. The path of gun gas can be changed according to its configuration. According to the optional configuration of the rear-gun-port diverter, the flow rate, path, and pressure of the gun gas were analyzed during gunfire. An analysis of the internal velocity distribution and the temperature change of the gun port revealed a rapid decrease in flow rate through the rear diverter according to the option configuration. The forward flow rate showed a similar tendency with little change. This ensures that the gun gas generated during gunfire has a sufficient flow distance from the aircraft surface, regardless of the rear gun port diverter's optional configuration. The flow stagnation of gun gas according to the option configuration of diverter had a great influence on the internal temperature rise of a gun port.

Concept Design of Angular Deviation and Development of Measurement System for Transparency in Aircraft (항공기 투명체의 편각개념 설계 및 측정 시스템 개발)

  • Moon, Tae-Sang;Woo, Seong-Jo;Kwon, Seong-Il;Ryu, Kwang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1123-1129
    • /
    • 2010
  • Angular Deviation(AD) on transparency applied to TA-50 Aircraft deteriorates armament system's accuracy because it makes a difference in between actual and theoretical targets. In order to increase accuracy, therefore, TA-50 Aircraft measures AD on transparency and provide the measured values for the integrated mission display computer as a type of AD coefficients. This makes AD revised so that pilots can accurately see the actual target on their head-up display. In order to implement such mechanism into a real field, we develop a new device and system automatically measuring AD for the first time. We also deal with basic concept including AD induction formula as well as operating systems. As a consequence of testing the accuracy and precision for verifying reliability of the system, we got satisfactory results. In specific, the accuracy was within the resultant criterion of 1%. The precision was also satisfied with respect to the whole criteria. The system developed through this research is qualified as a military standard equipment for transparency of the canopy.

Establishment for Efficiency Air-To-Ground Air Operation Model in Link-16 (Link-16 기반의 효율적인 공대지 항공작전 모델 설계)

  • Lee, Hyeong-Heon;Jang, Hyeong-Jun;Kim, Yeong-Gu;Lim, Jae-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.861-868
    • /
    • 2010
  • As CAS, X-ATK, and INT models considered as the most typical Air-to-Ground operation models in ROKAF are mainly designed as the voice-centered system between aircraft and ground control facilities, it is critical to newly develop the Link-16 based model for the ROK-US combined operation between F-15K, AWACS, M-SAM, and KDX-III equipped with Link-16. Former studies had been limited to the CAS operation, and they had mainly focused on reducing the voice transmission time to exchange the information between each mission step with maintaining existing operation steps. Therefore, this paper makes up the weak point in former studies, thereby designing new Air-to-Ground operation model for CAS, X-ATK, INT mission using Enterprise Architecture OV6c, which enables both aircraft and ground control facilities or between aircraft to obtain the real-time information on the location, identification, armament and the real-time image data through the broadcasting function. Based on the analysis of new operation model, we come to a conclusion that by simultaneously exchanging the information on mission between nodes concerned through the broadcasting function of Link-16. It is possible to cut down superfluous steps among the mission steps, and to reduce the mission time. It is clear that it gives rise to improve the battle efficiency and the decision-making tempo as well as the battlefield situational awareness.

THE DESIGN OF AN OPTIMAL SPARE KIT FOR WEAPON SYSTEMS

  • Oh Kwan-Chi
    • Journal of the military operations research society of Korea
    • /
    • v.1 no.1
    • /
    • pp.131-135
    • /
    • 1975
  • One of the pending issues of the Ministry of Defense is the efficient management of space parts for the weapon systems. It has been known that more than 000 million dollars are needed for spare parts for the weapon systems annually. Though the problem demands a serious consideration, there has not been any systematic study on the problem as far as the author knows. One way to approach the problem is through an investigation of the system reliability under constraints. A measure of how well a system performs or meets its design objectives is provided by the concept of system reliability. If successful operation is desired for a specified period of time, reliability is defined as the probability that the system will perform satisfactorily for the required time period. This interpretation of reliability is normally applied to devices which are subject to random failures such as electrical or mechanical systems. It has been found necessary to express system reliability in terms of the reliability of the components or subsystems which comprise the system. The major subsystems of an aircraft, for example, include the electronics, powerplant, airframe and armament subsystems. Therefore, the optimal spare part kit can be found by maximizing the system reliability subject to cost or other constraints.

  • PDF

A Study for Optimization of Armed Flight Test Ammunition Requirement for the Development of Attack Helicopter (공격헬기 개발을 위한 무장 비행시험 탄약발수 최적화 연구)

  • Lee, Myeong-Seok;Hur, Jang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.147-153
    • /
    • 2020
  • Developments in aircraft require safety verification through flight testing for many hours with prototype design and production. The test evaluation step of performing flight tests was an important process that determines the success in the development of the system. In particular, safety development through flight tests in the armed flight test is important for the development of attack helicopters. In the development of attack helicopters, the evaluation period and cost related to the armed flight test are closely related to the required ammunition requirement. Therefore, this paper presents the amount of ammunition required for the military flight test between attack helicopter developments through an analysis of the AH-1 helicopter in a similar case and ADS-44-HDBK of military specification. The AH-1 can be used to calculate the ammunition demand by considering the exclusion of redundant firing tests and configuration differences. In the case of the machine gun-equipped configuration, approximately 10,500R was required, and approximately 324R was required in the case of a rocket-mounted configuration. In addition, if the armed integrated bench is used properly, it is expected to promote efficiently the flight test in the armed flight by identifying the possible risk factors with armed flight tests and excluding them.