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Abstract

.One of the pending issues of the Ministry of Defense is the efficient man-
agement of space parts for the weapon systems. It has been known that more
than 000 million dollars are needed for spare parts for the weapon systems
annually. Though the problem demands a serious consideration, there has not
been any systematic study on the problem as far as the author knows. One
way to approach the problem is through an investigation of the system relia-
bility under constraints. V

A measure of how well a system performs or meets its design objectives is
provided by the concept of system reliability. If successful operation is desired
for a specified period of time, reliability is defined as the probability that the
system will perform satisfactorily for the required time period. This interpre-

tation of reliability is normally applied to devices which are subject to random
failures such as electrical or mechanical systems.

It has been found necessary to express system reliability in terms of the
reliability of the components or subsystems which comprise the system. The
major subsystems of an aircraft, for example, include the electronics, powerp-
lant, airframe and armament subsystems. Therefore, the optimal spare part

kit can be found by maximizing the system reliability subject to cost or other

constraints.

1. The Reliability Function

When a fixed number N of identical syst-
ems are repeatedly operated, there will be,
after a time t, N,(¢) test and N,(¢) that
fail. The reliability of such a system can then
be expressed as the folloWing ratio:

R(@®=N,(&)/N=1—N;@®)/N @M
Letting N be fixed, we have
dR(t)/dt=(—1/N) dN()/dt
or , .
dN(¢)/dt=—N dR(¢)/dt €D}
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Dividing both sides of equation (2) by N,
we obtain the instantaneous probability of
failure, denoted by »(#), i.e.,

r(©)=C[1/N.,(&)] dN(&)/dt
=[—N/N,(£)IdR(&)/d¢ 6]

Since R(&)=N.,(t)/N, we have
r(#)=[—1/R(] [dR()/d¢t)
Therefore,

R(®)=exp(—| 7(2) dz) @
The function r(£) is called the failure rate
function. v

If the system has a failure time density
function £(£), then the failure time distribu-
tion function is given by
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Fo=[f@dz ®
called the unreliability of the system at
time t. Thus, the system reliability can be
given by
R®=1—F)=exp(—[r@dz) (©®

9. Basic Sparing Criteria

One basic criterion for selection of the
number of spares needed is to determine the
number of spares that should be provided in
order to assure with remain in operation for
a specified length of time. Let f,(¢) denote
the density function for the time to the &
failure. If we allocate N spare devices, then
the probability that this number of spares
will be adequate for an interval of length ¢
is merely the probability that there will be
no more than N failures in [0, £J}; hence

 Pr{N spares are adequate for [0, 2]}
=Pr{(N+1)st failure time>#}

=[; frn@dz Q)

If the device has constant failure rate A,
then the sum of k independent, ideamtical,
exponentially distributed random variables is

distributed by the Gamma density function

A= ®

Thus by integrating by parts, we obtain
+oo N jp—At
[ Funs@rde=5 -0 O)
13 i= {

The quantity of the right side is the sum
of the Poisson distribution function. To det-

ermine the smallest value of N for which
X (At)ie ™
szlo———j! >& (100

for a given probability &, thus requires
that one refer to a table the Poisson dist-
ribution function.

When maximum system reliability, howe-

ver, is the criterion for the spare parts kit,

the kit can be selected as follows. Suppose
that the system is required to operate during
(0,£] and the system consists of » distinct

components arranged in series as in Fig.l.

TH e e a

Fig. 1

When a component fails, it is instantly
replaced by a spare if one is available. The
components are considered to operate indep-
endently of each other and are essential to
continued system operation. Assume that
only the spare parts provided in a kit, say
m,—1 for component i, is used for replace-
ment. Let P,(m;) be the probability that m;
or fewer failures of type i occur in [0,£] for
i=1,2,..., n Then the probability of system
operation without failure for the interval

[0,¢] is given by

Ple, M3yeees

m)=11 Pi(m,) an

The problem is to choose the vector(m,,
Mgy, S0 -as-to maximize P(m;, my ...,
m,). We will consider this problem when

there exist three constraints of the forms

Yem<C (12)
i=1

Z:]'w m<Ww (a3
m,=integers a4

3. The Optimal Allocation of
Spare Parts

Suppose that the components of type i in
a system under consideration have constant
failure rate A;, then the reliability of m; spa-

res for the #,, component is given by

Pi(m)= z—“ﬁfi a5)
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Since m,, m,,..., m, can take on only int-
egers the above problem can be formulated
as a dynamic programming problem with

three constraints:
Maximzie R,=J}, P,(m;)
i=1
subject to
m;=0, 1, 2, ---integers

ﬁc,.m,-g C (cost constraint) (16)
i=1

Ziwm; < W (weight constraint)
i=1

If we formulate this problem as a conven-
tional two constraints dynamic programming
problem of dealing with sequences of func-
tions of two variables with the following
general recurrence relation of the form

S(C, W)= Max Z
0=<m,<min[C/¢,, W/w,}’=!

my

(Autie=
J!

'fn—l(C-mncrn w —mnwn>
an

This formulation involves a great deal of
memory capacity in computationand, conse-
quently, will require more computing time.
Therefore, we’d better follow the method
suggested by R.E. Bellman i.e., the introd-
uction of Lagrange multiplier. Consider the

new problem of maximizing the expression
H Px<m|> e—a.z,:miwx
i=1 i=
subject to
m;=0,1,2,...integers as)
Xem <C
NECS
over all m,; satifying only the first two
constraints of the original problem. Setting

f+(C) equal to this maximum value, we have

the recurrence relation

My

Sa(C)= Max 2
: 0<m,<[C/e,)i=0
_O'_";.)!‘ﬂe—am.w. + fa-1(C—mauca) (19)

Thus, for =1 we have

m1

F(O= Max Z
0<m,<[C/e,]7=°
(lnj‘?ie—ht e “1mw1 (20)

Suppose that the failure rates, unit cost
and unit weight are given as follows:

Note that we do not have to consider f;
for all values of C: since the unit cost of
component 1 is 4.0 we need to compute £,

for 4.0, 8.0, 12.0,... of C. Furthermore, it
is clear that we have at least one component
for all stages: otherwise the reliability will
be zero. Thus, it is unnecessary to consider
values of C greater than C—(¢,+¢,), i.e.,
12 units of C. This becomes clear if the rec-
urrence relation for =2 is examined.

The recurrence relation for n=2 is -as

follows:
Fo(CO)= Max %
- ngzgic/%]!_n
Me—almw’z o f1(C—mzez)
Js
— Max iz
. 0<<m,<<[C/e,}="
(o, 3}:9_0'3 2 0. 04mz  f1(C—2,0mz) 2D

since we take the time interval equal to
a unit period. The result of compufations
for the above relation is shown in Table 3.

Finally, for n—=3 we have the recurrence
relation of the form

mg

SF(O)= Max PN
0<m;<[C/eg)=0
(0. 12’;8—0‘“ g0~ 08m3 4 f:(C—6. 0ms) (22>
J!

Table 4 shows the result of the computat-
‘ons for fa

TABLE 1 FAILURE RATE, UNIT COST
AND UNIT WEIGHT

Compnr | T | U | Vi
1 ' 0.2 4.0 5.0
2 0.3 2.0 4.0
3 0.1 6.0 8.0
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Furthermore, let’s assume that the cost
allowable is 20 units and the allowed max-
imum weight is 30 units. Since there is no
way to guess the exact value of a; in app-
lying the formulation (18), set @;=0.01 an
arbitrary value. If we proceed with this a,
we will find the following values for the

computation of equation (20):

TABLE 2 COMPUTATION OF 1,
C my Pi(my) je—ermm P1 (ml)e__;lmm
—J 1
1 .8187‘ . 9512 .7788
., 9825 . 9048 . 8890
12 3 . 9989 , 8607 . 8598
TABLE 3 COMPUTATION OF £,
72 (0. 3)ie—0.3
M 0.3)e702 _C—2.0m
Cmaj:ue—o.o'z;;z] ml___4_2 fi | Afr) fa
8 2 . 9631 1 . 7788|. 6924], 6924
1 .7118 1 . 7788|. 5544
14} 5 . 8187 1 . 7788|. 6703
4 . 8519 1 17 |. 6635
3 . 8837 2 . 8890/, 7856
2 L8891 2 n |.7904|, 7904
1 L7118 3 . 8598.. 6120
TABLE 4 COMPUTATION OF f;
T % (0. 1)de01f -
C |mg[i=0 J! C—6.0m3| f2 |ASfz]| f3
e £3my)
C
20| 2 . 8481 8 . 6924| . 5873
1 . 8352 14 .7904| . 6601) . 6601

Therefore, for a,=0.01 the optimal values
are m,=2, m,=2 and my;=1. However, as
the sum lef‘_, maw,=26<30 shows the
weight limi’tati:nl is not yet effective. Thus,
we may decrease the trial value for « to, say
a,=0,006. If the sum Wz-:-;/_] m;w; does not
approach 30 for the new a2:=1then we may
find another value a; either through inter-

polation or extrapolation. One simple way

is to compute

aazﬁyfz:—%;ch— W +ay

knowing a,, a;, W; and W,.

Now we repeat the computations from £,
to fs for a@,=0.0006. For z=1 we have the
recurrence relation
[1(O)=

Max g@i)__:e;m.e—o.wm, <23)
0<m,<[C/e}=* J*
Table 5 shows the result of computations.

TABLE 5 COMPUTATION OF 1,
N ip—0.2
=0 J¢
4 1 L7945
8 2 . 9253
12 3 .9129

The second stage recurrence relation is

given as follows:

Sfa = ]
Max Mw. 0, 03mz- f1(C—2,0mz)
0<m,<(C/ley= I .
28
And the third stage becomes
FO=
Max m(o_'l?_}ﬂl. 0. 048m3- f2(C—6, 0m3)
0<m,<[C/e)= I
(25)

Table 6 and 7 show the results of comput-

ations for £, and fs.

TABLE 6 COMPUTATION OF £,
1y (0. 3) je——o. G3rez,
C |mi|i=o ! C—2.0mz| f1 | Afr | Sz
o —0.03m;
8 2 . 9070 4 L7788 .7064| . 7064
1 .7189 6 ” . 5599
12| 5 . 8607 4 ”n . 6703
4 . 8867 -] ” . 6903
3 . 9106 8 . 8890| . 8096| . 8096
2 . 9070 10 7 , 8063
1 L7198 12 . 8598] .6181)
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TABLE 7 COMPUTATON OF f;
[(0_ 1ie—01
Cim; j=0._0_0;7;’:’3] C—6.0ms| f: |Afz | fs
A
20, 2 . 9042 8 .7064| . 6388
1 . 8624 14 . 8096 . 6982 . 6982

Note that in Table 6 we do not have con-
sider all values of C since the third stage
recurrence relation leave cost allowance 14,
8 and 2 for the first two stages. Furthermores
we can easily see that C—6.0m, correspon-
ding to the value of m;=3 is not optimal
since there is no money left for at least one
of m,. Thus, when a,=0.006 the optimal
values for m’s are

my=2 m2—3 my=1

Moreover, me =30. Thus the optimal
values are global optimal values of the orig-
inal problem (16). The optimal spare kit
comprises one spare for the component, two
spares for the second component and none
for the third.

4. Conclusion

In the above discussions we have not inv-
estigated the inventory management problem.
The problem we have analyzed is the optimal

mix of spare parts initially provided to mili-

tary units equipped with new weapon syst-
ems. This model can be applied to small
arms as well as to complex weapon systems.
Furthermore, the result can be easily expan-
ded to analyze different configurations of
subsystems. The so called stand-by system,
for example, poses a much more simpler

problem.
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