• 제목/요약/키워드: Airborne concentration

Search Result 409, Processing Time 0.03 seconds

Applicability of Optical Particle Counters for Measurement of Airborne Pesticide Spray Drift (공기 중 농약 비산의 측정을 위한 광학 입자 측정기의 적용성 평가)

  • Kim, Rack-Woo;Hong, Se-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.79-87
    • /
    • 2019
  • With desires for safe food, there is growing concern that pesticide spray drift will expose people, plants, and the environment to pesticide residue and potential negative effects thereof. For highly efficient, safe spray application, technologies for measuring the spray drift should be developed and improved with some urgency. This study investigated the applicability of two optical particle counters (OPCs), which are mostly used to measure airborne particle mass concentration, for measurement of airborne pesticide spray drift. Experiments were conducted in a controlled laboratory and an ash tree orchard to evaluate the handiness and accuracy of two OPCs, OPC 1 and OPC 2. The experimental results indicated that the OPC 1 was better applicable to the measurement of spray drift in the field while the use of the OPC 2 was limited due to its narrow range of measurable droplet sizes. The readings of the OPC 1 produced highly accurate results ($R^2=0.9637$) compared to the actual spray drift. For better application of OPCs, this study suggests the OPCs should be positioned properly to inhale spray droplets of the appropriate size and concentration.

Student Exposure to Airborne Dusts in Classroom of Middle Schools (중학교 학생들의 분진폭로에 관한 조사연구)

  • 이영길;백남원
    • Journal of Environmental Health Sciences
    • /
    • v.13 no.2
    • /
    • pp.25-33
    • /
    • 1987
  • This study was carried out to evaluate student exposures to dust in classroom of middle schools. A total of four schools, such as two in an urban and two in a rural area, were selected for this study. In this study, airborne dust concentrations were measured during a period from July 8 to July 18, 1986. Additional measurements of dust concentrations were conducted from November 4 to 7, 1986 to compare the results by seasonal variation. The results of this study were as follows. 1. Respirable dust concentrations were measured by both filtration method (C mg/m$^3$) and Digital Aerosol Monitor (cpm) to calculate anexchange factor K. K- value was 0.159 as follows. $K=\frac{c}{cpm} = \frac{2.71}{17.09} = 0.159$ 2. In summer when windows were opened, the concentrations of airborne respirable dusts measured by filter sampling method were 0.54-1.37 mg/m$^3$ in the morning and 0.79-1.75 mg/m$^3$ in the afternoon. Thus, higher levels were indicated in the afternoon. Meanwhile, the concentrations of airborne respirable dusts measured in winter were approximately twice as high as those in summer. 3. The highest dust concentrations were determined in School D which is a coeducational school with classroom of concrete floor. Walking roads in School D were not paved and students did not wear indoor-shoes. Dust levels in School D were approximately twice as high as levels in School B. All of the measured dust levels in four schools exceeded Korean Standard for outdoor air, 0.3 mg/m$^3$ for 24 hours. Results by Digital Aerosol Monitor indicated that there was no significant difference in dust levels among grades. The concentration of airborne dusts in the classroom was 1.5-3.0 times higher than that in the hall way. The concentration of airborne dusts during recess was 1.3-1.6 times higher than that during class. In winter, the dust concentrations during clean-up exceeded the permissible exposure limit, 10 mg/m$^3$ (as total dusts), for occupational exposures. 4. The concentrations of total dusts measured in winter were 1.5-2.4 times higher than those of respirable dusts measured simultaneously.

  • PDF

Characteristics of Bioaerosol Generation of Household Humidifiers by User Practices (가정용 가습기의 사용자 습관에 따른 실내공기 중 바이오에어로졸의 발생특성)

  • Kim, Ik-Hyeon;Kim, Ki Youn;Kim, Daekeun
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.6
    • /
    • pp.503-509
    • /
    • 2012
  • Objectives: This study was performed in order to evaluate the generation characteristics of airborne bacteria and fungi while operating a household humidifier, in consideration of user habits. Methods: Microbial samples were collected in a closed chamber with a total volume of 2.76 $m^3$, in which a humidifier was operated according to experimental strategies. A cultivation method based on the viable counts of mesophilic heterotrophic bacteria and fungi was performed. Experimental strategies were divided into three classes: the type of water in the water reservoir (tap water, cooled boiled water); the frequency of filling the reservoir (refill every day, no refill); and the sterilization method (sterilization function mode, humidifier disinfectants). Results: Significant increases in the concentration of airborne bacteria were observed while the humidifier was in operation. The concentration had increased to 2,407 $CFU/m^3$ by 120 hours when tap water filled the reservoir without any application of sterilization, while for cooled boiled water, it was merely 393 $CFU/m^3$ at a similar time point. Usages of disinfectant in the water tank were more effective in decreasing bioaerosol generation compared to sterilization function mode operation. Generation characteristics of airborne fungi were similar to those of bacteria, but the levels were not significant in all experiments. Calculated exposure factor can be used as an indicator to compare biorisk exposure. Conclusion: This study identified the potential for bioaerosol generation in indoor environments while operating a household humidifier. User practices were critical in the generation of bioaerosol, or more specifically, airborne bacteria. Proper usage of a humidifier ensures that any biorisks resulting from generated bioaerosol can be prevented.

Distribution Characteristics of Airborne Bacteria in Organic-Waste Resource Facilities (유기성 폐기물 자원화 시설에서 발생되는 부유 세균의 분포 특성)

  • Kim, Ki-Youn;Ko, Han-Jong;Kim, Dae-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.151-158
    • /
    • 2012
  • Objectives: Bioaerosols released by treating organic-waste resources cause a variety of environmental and hygiene problems. The objective of this study was to investigate the distribution characteristics of the airborne bacteria emitted from a pig manure composting plant, a principal site for organic-waste resource facilities. Methods: Three types of pig manure composting plant were selected based on fermentation mode: screw type, rotary type and natural-dry type. Each site was visited and investigated on a monthly basis between September 2009 and August 2010. A total of 36 air samplings were obtained from the pig manure composting plants. The air sampling equipment was a six-stage cascade impactor. Quantification and qualification of airborne bacteria in the air samples was performed by agar culture method and identification technique, respectively. Results: The mean concentrations of airborne bacteria in pig manure composting plant were 7,032 (${\pm}1,496$) CFU $m^{-3}$ for screw type, 3,309 (${\pm}1,320$) CFU $m^{-3}$ for rotary type, and 5,580 (${\pm}1,106$) CFU $m^{-3}$ for natural dry type. The screw type pig manure composting plant showed the highest concentration of airborne bacteria, followed by the natural dry type and the rotary type. The ratio of respirable to total airborne bacteria was approximately 40-60%. The predominant genera of airborne bacteria identified were Micrococcus spp., Staphylococcus spp. and Escherichia spp. Conclusion: Monthly levels of airborne bacteria were highest in August and lowest in November regardless of fermentation mode. There was no significant correlation relationship between airborne bacteria and environmental factors such as temperature, relative humidity and particulate matters in pig manure composting plants.

Characterization of Worker Exposure to Airborne Asbestos in Asbestos Industry (석면취급 사업장 근로자의 석면폭로 특성에 관한 연구)

  • Paik, Nam Won;Lee, Young Hwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.2
    • /
    • pp.144-153
    • /
    • 1991
  • This study was conducted to evaluate worker exposure to airborne asbestos fibers by industry, and to evaluate polarized-light microscopy for determining airborne asbestos fibers. A total of 11 plants including asbestos textile, brake-lining manufacturing, slate manufacturing, and automobile maintenance shops were investigated. Rsults of the study are summarized as follows. 1. Worker exposure levels to airborne asbestos fibers were the highest in asbestos textile industry, followed by brake-lining manufacturing, slate manufacturing, and automobile maintenance shops, in order. In asbestos textile industry, large variation of asbestos levels was found by plants. The worst plant indicated airborne fiber concentrations in excess of 10 fibers/cc, however, the best plant showed concentrations within 0.50 fibers/cc. 2. Characterization of airborne fibers by industry indicated that fibers from asbestos textile industry were the longest with the largest aspect ratio. Fibers from automobile maintenance shops were the shortest with the smallest aspect ratio. Based on characteristics of fibers and the highest levels of concentrations, it is concluded that workers in the asbestos textile industry are exposed to the highest risk of producing asbestosis, lung cancer, and mesothelioma. 3. Result s obtained using polarized-light microscopy were $43.7{\pm}12.3%$ of the results obtained using phase contrast microscopy. This may be resulted from the worse resolution of polarized-light microscopy than that of phase contrast microscopy. Based on the results, it is recommended that polarized-light microscopy be used for mainly bulk sample analyses and further study be performed to improve the method for determining airborne samples. However, polarized-light microscopy can be used for determining thick fibers.

  • PDF

Evaluation of Workers' Exposures to Airborne Lead chromate in the Producing and Using Industries (국내 무기안료 제조 및 취급 공정에서의 공기 중 크롬산연 노출 평가)

  • Choi, Ho Chun;An, Sun Hee;Lee, Hyun Seok;Kim, Hwa Sung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.4
    • /
    • pp.293-302
    • /
    • 2008
  • Lead chromate is made by sodium dichromate and lead acetate, and has being used widely in the part of pigment, paints, inks, plastics and so on. Even though lead chromate has health hazards which like both lead and chromium, there are a few study about pigment workplaces using lead chromate in Korea. The purpose of this study is to evaluate workers' exposure levels and airborne lead and chromium concentration in the pigment workplaces using lead chromate. There are 20 workers in the total 5 workplaces. 10 workers(50%) have been exposed to lead and 3 workers(15%) have been exposed to chromium, which exceeded the American Conference of Governmental Industrial Hygienists(ACGIH) Threshold Limit Value (Pb: $0.05\;mg/m^3$, Cr: $0.012\;mg/m^3$) and Korean Ministry of Labor's Standard. Geometric mean (GM) of airborne lead was highest in pigment ($0.0421\;mg/m^3$), paint ($0.0020\;mg/m^3$) and PVC coloring ($0.0007\;mg/m^3$), respectively(p<0.05). The result of airborne chromium concentration was paint ($0.0033\;mg/m^3$), paint ($0.0004\;mg/m^3$) and PVC coloring ($0.0003\;mg/m^3$). Also the lead and chromium concentration in the manual process is each 30 times and 10 times higher than the value in automatic process(p<0.01). In the classified process by detail, the concentration of airborne lead was $0.0638\;mg/m^3$ in grinding & packaging, mixture & after-measuring ($0.0436\;mg/m^3$), filtration & drying ($0.0402\;mg/m^3$), lead nitrate & dissolution($0.0129\;mg/m^3$), pigment commitment & mixture ($0.0013\;mg/m^3$) and dispersion & grinding ($0.0010\;mg/m^3$) (p<0.05). Moreover the concentration of a sample in weighting & packaging was $0.0023\;mg/m^3$. The concentration of lead in workers' blood was pigment (15.12 ug/dl), paint (4.74 ug/dl) and PVC coloring (2.50 ug/dl), and some samples have exceeded biological exposure limit. In conclusion, the depending on their work industry and process, workers have been exposed to the high lead chromate.

Evaluation of Airborne and Surface Lead Concentrations in Preschool Classroom (유아교육시설의 표면 및 공기 중 납 농도 평가)

  • Yoon, Chung-Sik;Paik, Do-Hyeon
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.1-7
    • /
    • 2006
  • This study was performed to investigate airborne lead concentration and surface lead contents in preschool facilities. Arithmetic mean of indoor lead concentration in urban area was $44.7\;ng/m^3$ (Geometric mean $32.1\;ng/m^3$) whereas outdoor concentration was $39.5\;ng/m^3$ (GM $22.8\;ng/m^3$). In rural area, airborne lead concentrations were $14.2\;ng/m^3\;(GM\;7.9 ng/m^3),\;12.6\;ng/m^3\;(GM\;5.6 ng/m^3)$, respectively. There is statistical significance of the lead concentrations among the locations of preschool facilities. About $37\%$ of qualitative lead check samples was positive and mainly was found in lead based paint. Though lead concentrations on the floor and window sill were well below the US EPA and HUD standard (floor $40\;{\mu}g/ft^2\;(4.3\;{\mu}g/100\;cm^2)$, window sill $250\;{\mu}g/ft^2\;(26.9\;{\mu}g/100\;cm^2)$, respectively), there were much samples which exceed the standard, i.e., $29\%$ of surface wall, $20\%$ of the desk and chair, $100\%$ of painted wood box of tested samples. In view of our study and hazard of lead to children, we recommended that the contents of lead in preschool facilities should be lowered as possible.

Exposure Assessment of Airborne Cobalt in Manufacturing Industries (코발트 취급사업장의 공기 중 코발트 노출평가)

  • Kim, Jae Hong;Jung, Jong-Hyon;Phee, Young Gyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.2
    • /
    • pp.166-173
    • /
    • 2015
  • Objectives: The purpose of this study was to evaluate cobalt concentrations in airborne inhalable, total and respirable dust from manufacturing industries using cobalt. Methods: To compare cobalt concentrations, three types of dust samplers(a 37mm closed cassette sampler, Institute of Occupational Medicine(IOM) sampler, and Aluminum cyclone sampler) were used. The analysis of cobalt concentrations was conducted using AAs based on the NIOSH 7300 method. Results: The geometric mean of cobalt concentration in total dust was $1.47{\mu}g/m^3$, and the rate of excess of the Korean Occupational Exposure Limit(KOEL) was 10.0%. The geometric mean concentrations of cobalt in super alloy manufacturing industries were higher than those in plating industries, and molding operations showed higher exposure levels to cobalt than did other operations. Conclusions: The rate of cobalt concentration in inhalable dust from super alloy manufacturing industries exceeding the Workplace Exposure Limit(WEL) as recommended by the Health & Safety Executive(HSE) was 7.1%, which means proper work environmental management is required through wet work environments. Given that molding operations had higher cobalt concentrations, it is necessary to apply measures such as local exhaust for reducing airborne dust in cobalt manufacture industries.

Seasonal Distribution and Diversity of Airborne Fungi in a Wooden Cultural Heritage Site: A Case Study of The Seonamsa Temple, Suncheon (목조문화재에서 계절에 따른 부유 진균의 분포 및 다양성에 관한 연구: 순천 선암사를 중심으로)

  • Hong, Jin Young;Kim, Young Hee;Lee, Jeung Min;Kim, Soo Ji;Jo, Chang Wook;Park, Ji Hee
    • The Korean Journal of Mycology
    • /
    • v.46 no.2
    • /
    • pp.122-133
    • /
    • 2018
  • The Seonamsa temple is located on steep terrain surrounded by forests and valleys, and is a place that the temple is scared of biological damage because it has high humidity and low wind levels. Therefore, we investigated a concentration and diversity of airborne fungi in indoor and outdoor by collecting air each season. The outdoor fungal load was far higher in spring ($276CFU/m^3$), autumn ($196CFU/m^3$), summer ($128CFU/m^3$) than in winter ($24CFU/m^3$). The lowest located Jijangjeon and upper located Wontongjeon showed the highest distribution of $337.4CFU/m^3$ in summer and $333.4CFU/m^3$ in autumn, respectively. Summer is the season with large variations in the concentration of airborne fungi between indoor and outdoor, a concentration of airborne fungi in indoor was maximum three times higher than these in outdoor with $128CFU/m^3$. Although the most fungi were collected in spring, fungal diversity was richer in summer and autumn with 28 genera 45 species and 25 genera 47 species, respectively. In particular, the concentration of airborne fungi was the most highest in all sampling sites in autumn, of which Ascomycota members accounted for 86% and Cladosporium genus was dominated. The most kind of Penicillium (16 species) was mainly distributed in indoor air in summer, autumn and winter.

Concentrations and environmental influences of airborne fungi at university laboratories, hospital diagnostic laboratories (대학실험실과 병원진단검사실에서의 부유진균 농도와 환경영향인자)

  • Hwang, Sung-Ho;Park, Dong-Uk;Ha, Kwon-Chul;Park, Hyun-Hee;Joo, Se-Ik;Yoon, Chung-Sik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.4
    • /
    • pp.256-262
    • /
    • 2010
  • This study evaluated the airborne concentrations of fungi in university laboratories, hospital diagnostic laboratories in Seoul. The incubated fungi was identified by lactophenol cotton blue (LPCB) staining method. Variables such as types of ventilation, temperature and relative humidity were investigated to explain laboratory airborne fungal concentrations. A total of 97 air samples were collected from 10 facilities in two institutions. Aspergilus spp., including Aspergilus niger, Aspergillius flavos and Penicillium spp. were found as predominant species. Airborne fungal concentrations ranged from not detected (ND) to 1,890 CFU/$m^3$. Airborne fungal concentrations were high in general-ventilated facilities and in laboratories where relative humidity ( > 60 %) were high ( p < 0.001). Therefore, we suggest that relative humidity should be maintained to properly reduce the concentration of fungal in university and hospital laboratories.