• Title/Summary/Keyword: Airborne Software

Search Result 54, Processing Time 0.022 seconds

Airborne Software Approval and Common DO-178B Pitfalls (항공용 소프트웨어 인증과 개발단계별 주의사항)

  • Yi, Baeckjun;Jin, Youngkwon
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.3
    • /
    • pp.1-6
    • /
    • 2012
  • It is booming to use computer owing to the information society, and embedded software application have grown in airborne systems and equipment. So this introduces airborne software, RTCA DO-178B, life cycle and its data, and software development pitfalls in design and certification.

The Study on Airworthiness Certification Process on Military Airborne Safety Critical Software based on DO-178 (DO-178 기반의 군용항공기 탑재 안전필수 소프트웨어 감항인증 방안에 대한 고찰)

  • Heo, Jin Gu;Kim, Min Sung;Kim, Man Tae;Moon, Yong Ho
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.62-68
    • /
    • 2019
  • The software installed on an aircraft is directly related to its safety. Therefore, it shall comply with the standards of the airworthiness certification to ensure safety of flight. Airborne software should be developed in accordance with the DO-178 (Software Consideration in Airborne Systems and Equipment Certification) to comply with the airworthiness certification criterion. However, the military airborne software has been developed in accordance with the DAPA weapons system software development and management manual. In this paper, we completed a questionnaire survey of software experts. We also suggest a military airborne software development/certification process based on DO-178.

항공용 소프트웨어의 설계·인증 고려사항

  • Yi, Baeck-Jun;Kim, Seung-Kyem
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.177-182
    • /
    • 2004
  • It is booming to use computer owing to the information society, and embedded software application have grown in airborne systems and equipment. So this introduces airborne software classification, software life cycle, activities to achieve objectives and software considerations in design and certification.

  • PDF

Validation Method of ARINC 661 UA Definition File and CDS Configuration File for DO-330 Tool Qualification (DO-330 도구 자격인증을 고려한 ARINC 661 UA 정의 파일과 CDS 설정 파일의 유효성 확인 방법)

  • Younggon Kim
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.11-24
    • /
    • 2022
  • The tool for developing airborne software requires the same level of safety as airborne software because the tool whose output is part of the airborne software and thus could insert an error into the airborne software. This paper describes how to ensure the reliability of the tool output that becomes a part of the airborne software by validating of the input and output files of the tool when generating the ARINC 661 standard UA definition file and the CDS configuration file through the A661UAGEN tool of Hanwha Systems. We present the method to validate XML data structure and contents with an XML schema definition, which is an input of the A661UAGEN tool. And the method to validate the output binary data by using mask data for the corresponding data structure and valid value, which is the output of the A661UAGEN tool, was presented. As such, validation of the input and output of the tool improves the reliability of binary DFs and CDs integrated into the airborne software, allowing airborne software developers to utilize the tool to ensure safety in developing the OFP.

A Study on Safety of Airborne Software and Considerations during Development (항공용 소프트웨어 안전성 및 개발시 주의사항에 대한 고찰)

  • Yi, Baeckjun;Choi, Jong Yeoun;Nam, Gi Wook
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.2
    • /
    • pp.81-85
    • /
    • 2016
  • It is recognized that safety is a key point of technical competency. Its adoption is widely spread in development of products and it is essentially necessary in aerospace industry because airborne system and equipment are used complex high-technology and implemented systematic performance using software. This study reviews system safety assessment, development assurance level, airborne software, RTCA DO-178 process, and considerations & pitfalls in software development.

An Analysis Tool for Flight Test of Airborne Display Software (항공기 시현계통 소프트웨어의 비행시험을 위한 분석도구)

  • Lee, Yong-Rae;Choi, Eu-Teum;Jun, Yong-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.961-968
    • /
    • 2018
  • Airborne display systems provide pilots with a variety of information needed to operate aircraft. Software faults in the display system can seriously affect the operation of the aircraft, because it can provide inaccurate information to the pilot. Therefore, the software faults are identified and eliminated through ground testing and flight testing. This paper presents an analysis tool called FDR (flight data replay) for flight test of airborne display software. This tool works in real time with the mission computer of aircraft. Also, the tool reproduces the functional error conditions that appear in the display systems by applying flight test data to the display software.

On-the-fly Atomicity Violation Repairing Technique for Airborne Health Management Systems (항공기 건전성 관리시스템용 원자성 위배 자율 수리 소프트웨어 기법)

  • Choi, Eu-Teum;Lee, Dong-Su;Jun, Yong-Kee;Lee, Seongjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.547-554
    • /
    • 2020
  • Airborne health management system prevents functional failure caused by errors or faults in the airborne software. On-the-fly repairing atomicity violations (AV) in an ARINC-653 concurrent software is critical for guaranteeing correctness of execution of the software. This paper proposes Repairing-AV which efficiently repairs atomicity violations. The Repairing-AV can diagnose and prevent an error on-the-fly by utilizing the training results of the software and controls access to the shared variable of the thread where the error occurred. The evaluation of the Repairing-AV measures the time overhead by applying the previous work and the Repairing-AV to five synthesis programs containing the atomicity violation. As the result of evaluation, the RepairingAV constantly shows about 1.4x time overhead regardless of count of shared variable access.

Development and Verification Methodology for Small Civil Unmanned Aerial Vehicle System based on Open System Architecture (개방형 시스템 아키텍처 기반의 소형 민간 무인항공기 시스템 개발 및 검증 방법)

  • Jo, Hyun-Chul;Park, Keunyoung
    • Journal of Platform Technology
    • /
    • v.8 no.2
    • /
    • pp.32-43
    • /
    • 2020
  • The Unmanned Aerial Vehicle(UAV) system has been mainly used for military domains, but it also widely applied to used in the civilian domains. In civilian domains, low-cost and small-sized UAV systems are mainly applied in various industries. The software that operates UAV systems has a lot of common functions. However, even though there are many common functionalities of the software, changing the devices may cause a problem requiring software modification. These problems degrade interoperability, modularity and portability in UAV systems. In order to solve the problems, an Open System Architecture(OSA) has been proposed. In this paper, we propose a UAV system software architecture based on Future Airborne Capability Environment(FACE) standard. Our system can support UAV systems of various platforms in the civilian domains, which is supplied in small quantity batch production. And it has the advantages of software consolidation and portability. Finally, We describe the development and conformant methodology of the software based on the FACE standard using open development tools.

  • PDF

Verification Methods for Vulnerabilities of Airborne Object-Oriented Software (항공용 객체지향 소프트웨어에 대한 취약점 검증 방안)

  • Jang, Jeong-hoon;Kim, Sung-su;Lee, Ji-hyun
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.13-24
    • /
    • 2022
  • As the scale of airborne system software increases, the use of OOT (Object-Oriented Technology) is increasing for functional expansion, efficient development, and code reuse, but the verification method for airborne object-oriented software is conducted from the perspective of the existing procedure-oriented program. The purpose of this paper was to analyze the characteristics of OOT and the vulnerabilities derived from the functional characteristics of OOT, and present a verification method applicable to each software development process (Design, Coding and Testing) to ensure the functional safety integrity of aviation software to which OOT is applied. Additionally, we analyzed the meaning of the static analysis results among the step-by-step verification measures proposed by applying LDRA, a static analysis automation tool, to PX4, an open source used to implement flight control software.

Airborne HPGe spectrometer for monitoring of air dose rates and surface activities

  • Marcel Ohera;Lubomir Gryc;Irena Cespirova;Jan Helebrant;Lukas Skala
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4039-4047
    • /
    • 2023
  • This contribution describes the application of HPGe detector for the airborne quantitative analysis. The hardware of the airborne HPGe system was designed from the commercial components with only exception of the newly designed AirHPGeSpec special software to control, measure and process the data. The system was calibrated for the local air kerma rates measured on helicopter board and its conversion to the air kerma rates at 1 m above the ground was proposed. Two examples of the air kerma rates measured over the former uranium mining areas are presented and compared with the results of other airborne system on the board. This airborne HPGe system could be also used for measuring the surface activities in a radiation event. The nuclides of 131I, 132Te - 132I, 133I, 134I, 135I, 137Cs, 134Cs, 88Rb and 103Ru were selected from possible nuclear power plant emergency scenarios. The Monte Carlo simulation was used to calculate HPGe detector efficiencies for the flight altitudes from 25 to 300 m for the energies from 300 keV to 3 MeV of the nuclides in question. Also, the detection limits according to the Currie method as well as ISO 11929-2010 for selected nuclides are presented.