• Title/Summary/Keyword: Airborne Bacteria

Search Result 122, Processing Time 0.024 seconds

Evaluation of Air Quality in the Compost Pilot Plant with Livestock Manure by Operation Types (축분 퇴비화시스템 운용방식에 따른 실내 대기오염 평가)

  • Kim, K.Y.;Choi, H.L.;Ko, H.J.;Kim, C.N.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.283-294
    • /
    • 2004
  • Air quality in the livestock waste compost pilot plant at the Colligate Livestock Station was assessed to quantity the emissions of aerial contaminants and evaluate the degree of correlation between them for different operation strategies; with the ventilation types and agitation of compost pile, in this study. The parameters analyzed to reflect the level of air quality in the livestock waste compost pilot plant were the gaseous contaminants; ammonia, hydrogen sulfide, and odor concentration, the particulate contaminants; inhalable dust and respirable dust, and the biological contaminants; total airborne bacteria and fungi. The mean concentrations of ammonia, hydrogen sulfide, and odor concentration in the compost pilot plant without agitation were 2.45ppm, 19.96ppb, and 15.8 when it was naturally ventilated, and 7.61ppm, 31.36ppb, and 30.2 when mechanically ventilated. Those with agitation were 5.50ppm, 14.69ppb, and 46.4 when naturally ventilated, and 30.12ppm, 39.91ppb, and 205.5 when mechanically ventilated. The mean concentrations of inhalable and respirable dust in the compost pilot plant without agitation were 368.6${\mu}g$/$m^3$ and 96.0${\mu}g$/$m^3$ with natural ventilation, and 283.9${\mu}g$/$m^3$ and 119.5${\mu}g$/$m^3$ with mechanical ventilation. They were also observed with agitation to 208.7${\mu}g$/$m^3$ and 139.8${\mu}g$/$m^3$ with natural ventilation, and 209.2${\mu}g$/$m^3$ and 131.7${\mu}g$/$m^3$ with mechanical ventilation. Averaged concentrations of total airborne bacteria and fungi in the compost pilot plant without agitation were observed to 28,673cfu/$m^3$ and 22,507cfu/$m^3$ with natural ventilation, and 7,462cfu/$m^3$ and 3,228cfu/$m^3$ with mechanical ventilation. They were also observed with agitation to 19,592cfu/$m^3$ and 26,376cfu/$m^3$ with the natural ventilation, and 18,645cfu/$m^3$ and 24,581cfu/$m^3$ with the mechanical ventilation. It showed that the emission rates of gaseous pollutants, such as ammonia, hydrogen sulfide, and odor concentration, in the compost pilot plant operated with the mechanical ventilation and with the agitation of compost pile were higher than those with the natural ventilation and without the agitation. While the concentrations of inhalable dust and total airborne bacteria in the compost pilot plant with the natural ventilation and with the agitation, the concentrations of respirable dust and total airborne fungi in the compost pilot plant with the mechanical ventilation and agitation were higher than those with the natural ventilation and without the agitation of compost pile. It was statistically proved that indoor temperature and relative humidity affected the release of particulates and biological pollutants, and ammonia and hydrogen sulfide were believed primary malodorous compounds emitted from the compost pilot plant.

Safety Monitoring of a Processing Plant for Preparing Raw Oysters Crassostrea gigas for Consumption (생식용 굴(Crassostrea gigas) 작업장의 위생안전성에 대한 모니터링)

  • Kang, Kyung Tae;Park, Sun Young;Choi, Jong-Duck;Kim, Min Joo;Heu, Min Soo;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.120-129
    • /
    • 2017
  • This study assessed the safety of raw oysters Crassostrea gigas for consumption during processing in a processing plant. Bacterial contamination (e.g., viable cell counts, coliform groups, Escherichia. coli and pathogenic bacteria) and chemical contamination (e.g., heavy metals and shellfish toxins) were measured on raw oysters, a processing equipment, employees and work areas. No total mercury, lead, paralytic shellfish poison, diarrheic shellfish poison or norovirus was detected in any post-harvested oyster samples. However, the cadmium level ranged from 0.1-0.2 mg/kg. The viable cell count, E. coli and coliform group levels in post-harvested oysters ranged from 4.00-4.54 log CFU/g, ND-210 MPN/100 g and 110-410 MPN/100 g, respectively. The viable contaminating cell counts on employees, equipment and work areas were in the range of $0.90-3.46log\;CFU/100cm^2$. Airborne bacteria in the work areas ranged from 0.60 to 1.81 log CFU/plate/15 min. Thus, no significant health risks were detected in the processing plant.

Bibliographical Study on Microorganims of Traditional Korean Nuruk(Since 1945) (한국 전통 누룩 미생물의 문헌적 고찰(1945년 이후를 중심으로))

  • Yu, Tae-Shick;Kim, Jung;Kim, Hyun-Soo;Hyun, Ji-Suk;Ha, Hyun-Pal;Park, Moon-Geun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.4
    • /
    • pp.789-799
    • /
    • 1998
  • Literatures on microorganisms of traditional Korean nuruk published since 1945 were reviewed in this paper. Traditional Korean nuruk consists of raw barley and various grains. Traditional Korean nuruk consists of unbolied raw barely and various grains. They are ground to paste and moistened, and then naturally inoculated by airborne microorganisms. Therefore, many kinds of microorganisms such as fungi, yeast, and bacteria grwo in nuruk. Since 1945, new 14 species of Aspergillus and 9 species of Penicillium have been identified from traditional Korean nuruk. Total number of fungal species identified so far is now up to 38 species among 12 different genus. Among newly isolated fungal species, Aspergillus penicilloides and Penicillium, expansum showed not only high production rate of acid and amylase but also extreme stability of the enzyme at room temperature for 3 months. As examples of newly isolated yeast species, there are 5 species of Candida, 4 species of Hansenula, 1 species of Pichia and 1 species of Schizosaccharomyces. Total number of yeast species isolated so far is up to 18 species from different 8 genus. Newly isolated bacteria, were Bacillus pumilus, Lactobacillus casei and Leuconostoc mesenteroides.

  • PDF

Changes in microbial phase by period after hepa filter replacement in King oyster(Pleurotus eryngii) mushroom cultivation (큰느타리 재배사에서 헤파필터 교체 이후 기간에 따른 미생물상 변화)

  • Park, Hye-Sung;Min, Gyong-Jin;Lee, Eun-Ji;Lee, Chan-Jung
    • Journal of Mushroom
    • /
    • v.18 no.4
    • /
    • pp.398-402
    • /
    • 2020
  • This study was conducted to set up a proper replacement cycle of High Efficiency Particulate Air (HEPA) filters by observing the microbial populations in the air of the cultivation house of Pleurotus eryngii, before and after HEPA filter replacement at different periods. The density of bacteria and fungi in the air during each cultivation stage was measured using a sampler before the replacement of the HEPA filter. The results showed that airborne microorganisms had the highest density in the mushroom medium preparation room, with 169.7 CFU/㎥ of bacteria and 570 CFU/㎥ of fungi, and the removed old spaun had 126.3 CFU/㎥ of bacteria and 560 CFU/㎥ of fungi. The density of bacteria and fungi in the air at each cultivation stage before the replacement of the HEPA filter was 169.7 CFU/㎥ and 570 CFU/㎥, and 126.3 CFU/㎥ and 560 CFU/㎥, during the medium production and harvesting processes, respectively. After the replacement of the HEPA filter, the bacterial density was the lowest in the incubation room and the fungal density was the lowest in the cooling room. The microbial populations isolated at each period consisted of seven genera and seven species before the replacement, including Cladosporium sp., six genera and six species after 1 month of replacement, including Penicillium sp., 5 genera and 7 species after 3 months of replacement, including Mucor plumbeus, and 5 genera and 12 species, 5 genera and 10 species, and 5 genera and 10 species, 4, 5, and 6 months after the replacement, respectively, including Penicillium brevicompactum. During the period after replacement, the species were diversified and their number increased. The density of airborne microorganisms decreased drastically after the replacement of the HEPA filter. Its lowest value was recorded after 2 months of replacement, and it increased gradually afterwards, reaching a level similar to or higher than that of the pre-replacement period. Therefore, it was concluded that replacing the HEPA filter every 6 months is effective for reducing contamination.

The Clinical Report on the Pulmonary Tuberculosis, Tuberculosis Meningitis (Pulmonary Tuberculosis, Tuberculous Meningitis의 임상치험 3례)

  • Son, Yun-Jung;Lim, Joong-Hwa;Lee, Do-Hyoung
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.352-360
    • /
    • 2004
  • Tuberculosis, one of the oldest diseases known to affect humans, is caused by bacteria belonging to the Mycobacterium luberculosis complex. The diseases usually affects the lungs, although in up to one-third of cases other organs are affected. If properly treated, tuberculosis caused by drug-susceptible strains is curable in virtually all cases. If untreated, the disease may be fatal within 5 years in more than half of cases. Transmission usually takes place through the airborne spread of droplets of nuclei produced by patients with infectious pulmonary tuberculosis. Two patients with Pulmonary Tuberculosis and one with Tuberculous Meningitis were recently examined. The changes in these patient's symptoms through both western medical treatment and oriental medical treatment are reported.

  • PDF

Development of air-sterilization purification system of fusion and composite structure using broadband-to-active photocatalyst (광대역대 활성광촉매를 활용한 융·복합 구조 공기살균정화장치 개발)

  • Yoon, Sueng-Bae;Hwang, Yun-Jung;Kim, Seung-Cheon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.147-151
    • /
    • 2019
  • Modern people spend most of their daily lives in their homes, schools, or workplaces, hospitals, shopping malls, subway stations, rooms, and parking lots. According to the survey, air quality management at the multi-use facility is less than 50% satisfied. In this study, a photocatalytic filtration system is developed by utilizing a broadband-to-active photocatalyst that utilizes a media photocatalyst filter that removes airborne germs from indoor air as well as indoor air quality and operates on visible light as well as ultraviolet light.

An Assessment of Environmental Characteristics Associated with the Level of Endotoxin Concentration in Hospital Lobbies (일부 종합 병원 로비의 공기 중 엔도톡신 농도에 미치는 환경 요인 평가)

  • Lee, Kyeong-Min;Yeom, Jeongkwan;Lee, Wonjae;Ryu, Seung-Hun;Park, Dongjin;Park, Dong-Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.310-320
    • /
    • 2014
  • Backgrounds: Endotoxin, which found in the outer membrane of the gram-negative bacteria cell wall, makes up almost all of the lipopolysaccharide(LPS). When people are exposed to endotoxin,it can result in diverse health effects such as an airway irritation and inflammation, fever, malaise, bronchitis, allergic asthma, toxic pneumonitis, hypersensitivity lung disease. Cases among the elderly, children or pregnant can occur more frequently than a healthy adult if they are repeatedly exposed to the existing endotoxin. Therefore, we investigated and assessed the environmental characteristics associated with the airborne endotoxin concentration level in six hospital lobbies. Method: Endotoxin from indoor air in six hospital lobbies was measured by an area sampling method and analyzed according to American Society for Testing and Materials International(ASTM international) E2144-01. Total suspended particulate(TSP), carbon dioxide($CO_2$), temperature and humidity were also measured by using direct reading measurements or airborne sampling equipment at the same time. Environmental characteristics were appropriately divided into two or three groups for a statistics analysis. One-way analysis variable(one-way ANOVA) was used to examine a difference of the endotoxin concentration, depending on the environmental characteristics. In addition, only variables with p-value(p<0.25) were eventually designed to the best model by using multiple regression analysis. Results: The correlation analysis result indicated that TSP(p=0.003) and $CO_2$(p<0.0001) levels were significantly associated with endotoxin concentration levels. In contrast, temperature(p<0.068) and humidity(p<0.365) were not associated with endotoxin concentration. Levels of endotoxin concentration were statistically different among the environmental characteristics of Service time(p=0.01), Establishment of hospital(p<0.001), Scale of hospital(p=0.01), Day average people using hospital(p=0.03), Cleaning time of lobby(p=0.05), Season(p<0.001), and Cleaning of ventilation system(p<0.001) according to ANOVA. Finally, the best model(Adjusted R-square=72%) that we designed through a multiple regression test included environmental characteristics related to Service time, Area of lobby, Season, Cleaning of ventilation system, and Temperature. Conclusions: According to this study, our result showed a normal level of endotoxin concentration in the hospital lobbies and found environmental management methods to reduce the level of endotoxin concentration to a minimum. Consequently, this study recognized to be requirement for the management of ventilation systems and an indoor temperature in order to reduce the level of endotoxin concentration in the hospital lobbies.

Photocatalytic disinfection of indoor suspended microorganisms (Escherichia coli and Bacillus subtilis spore) with ultraviolet light (광촉매와 UVA에 의한 실내 부유 미생물(E. coli 및 Bacillus. subtilis sp.) 살균 제거 연구)

  • Yoon, Young H.;Nam, Sook-Hyun;Joo, Jin-Chul;Ahn, Ho-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1204-1210
    • /
    • 2014
  • New control methods are proposed for indoor air quality by removing fine airborne dust-particles. As suspended fine dust-particles contain inorganic dust as well as fine organic bacteria, studies for simultaneous control of these contaminants are required. In this study, photocatalytic disinfection of indoor suspended microorganisms such as E. coli and Bacillus subtilis is performed by three types of photocatalysts with UVA irradiation. The UVA irradiation strength was controlled to the minimum $3{\mu}W/cm^2$, and ZnO, $TiO_2$, and ZnO/Laponite ball were used as the catalysts. The results indicate that E. coli was removed over 80 % after about 2 hours of reaction with UVA and all three types of photocatalysts, whereas only with UVA, around 50 % E. coli removal was obtained. Among the catalysts, ZnO/Laponite composite ball was found to have similar sterilizing capacity to $TiO_2$. However, in case of B. subtilis, which has thick cell wall in its spore state, disinfection was not effective under the low UVA irradiation condition, even with the catalysts. Further studies need to figure out the optimal UVA irradiation ranges as well as photocatalysts doses to control airborne dust, to provide healthy clean air environment.

Distribution and Characteristics of Heterotrophic Plate Count Bacteria in Water Samples from Drinking Water Dispensers (냉온수기에서 일반세균의 분포 및 분리한 세균의 특성)

  • Lee, Eun-Hwa;Koh, Ji-Yun;Kim, Jong-Seol
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.244-250
    • /
    • 2008
  • To evaluate bacteriological water quality, samples were taken from drinking water dispensers placed at S company (S-C) and U highschool (U-H) in Ulsan. The medians of heterotrophic plate counts (HPCs) were 53 CFU/ml for the 74 water samples of S-C and 80 CFU/ml for the 36 cold water samples of U-H, and 38% of the S-C and 42% of the U-H samples showed HPC bacterial concentrations higher than 100 CFU/ml. Coliform bacteria were detected from one sample of S-C. To determine the major source of bacterial contamination, water samples were taken daily for $6\sim8$ days from the bottled water containers as well as the faucets of an experimental water dispenser. While the average HPCs in the bottled water containers were 33 CFU/ml for the first and 132 CFU/ml for the 2nd analysis, the HPC concentration in the cold water samples was 1,022 CFU/ml for the 2nd analysis. These results suggest that the majority of bacteria detected in the cold water samples were originated from the biofilms on the surface of water passages within the water dispensers. There was no significant increase in HPC bacterial concentrations within the bottled water container after installation on the water dispenser. We could isolate and tentatively identify 3 genera 6 species of Gram-positive and 7 genera 7 species of Gram-negative bacteria from the plate count agar plates of U-H samples. Among the isolates, 72% were observed as Gram-positive, and Micrococcus spp. was the most abundant with 54% of the total, followed by Sphingomonas paucimobilis with 16%. It appears that most of the HPC bacteria detected in water dispensers originate from indoor airborne bacteria, which may play important roles in the formation of biofilms on the surface of water passages within the water dispensers.

Bioaerosol Exposure and in vitro Activation of Toll-like Receptors in a Norwegian Waste Sorting Plant

  • Eriksen, Elke;Graff, Pal;Pedersen, Ine;Straumfors, Anne;Afanou, Anani K.
    • Safety and Health at Work
    • /
    • v.13 no.1
    • /
    • pp.9-16
    • /
    • 2022
  • Background: The global shift toward greener societies demands new technologies and work operations in the waste-management sector. However, progressive industrial methods do not necessarily consider workers' health. This study characterized workers' exposure to bioaerosols and investigated the bioaerosols' potential to engage the immune system in vitro. Methods: Full shift personal aerosol sampling was conducted over three consecutive days. Dust load was analyzed by gravimetry, fungal and actinobacterial spores were analyzed by scanning electron microscopy, and endotoxin by limulus amebocyte lysate (LAL) assay. In vitro exposure of HEK cells to airborne dust samples was used to investigate the potential of inducing an inflammatory reaction. Results: The total dust exposure level exceeded the recommended occupational exposure limit (OEL) of 5.0 mg/m3 in 3 out of 15 samples. The inhalable endotoxin level exceeded the recommended exposure level by a 7-fold, whereas the fungal spore level exceeded the recommended exposure level by an 11-fold. Actinobacterial spores were identified in 8 out of 14 samples. In vitro experiments revealed significant TLR2 activation in 9 out of 14 samples vs. significant TLR4 activation in all samples. Conclusion: The present study showed that the dust samples contained potentially health-impairing endotoxin, fungi, and actinobacterial levels. Furthermore, the sampled dust contained microbial components capable of inducing TLR activation and thus have the potential to evoke an inflammatory response in exposed individuals.