DOI QR코드

DOI QR Code

Bioaerosol Exposure and in vitro Activation of Toll-like Receptors in a Norwegian Waste Sorting Plant

  • Eriksen, Elke (STAMI, National Institute of Occupational Health) ;
  • Graff, Pal (STAMI, National Institute of Occupational Health) ;
  • Pedersen, Ine (STAMI, National Institute of Occupational Health) ;
  • Straumfors, Anne (STAMI, National Institute of Occupational Health) ;
  • Afanou, Anani K. (STAMI, National Institute of Occupational Health)
  • 투고 : 2021.05.31
  • 심사 : 2021.09.23
  • 발행 : 2022.03.30

초록

Background: The global shift toward greener societies demands new technologies and work operations in the waste-management sector. However, progressive industrial methods do not necessarily consider workers' health. This study characterized workers' exposure to bioaerosols and investigated the bioaerosols' potential to engage the immune system in vitro. Methods: Full shift personal aerosol sampling was conducted over three consecutive days. Dust load was analyzed by gravimetry, fungal and actinobacterial spores were analyzed by scanning electron microscopy, and endotoxin by limulus amebocyte lysate (LAL) assay. In vitro exposure of HEK cells to airborne dust samples was used to investigate the potential of inducing an inflammatory reaction. Results: The total dust exposure level exceeded the recommended occupational exposure limit (OEL) of 5.0 mg/m3 in 3 out of 15 samples. The inhalable endotoxin level exceeded the recommended exposure level by a 7-fold, whereas the fungal spore level exceeded the recommended exposure level by an 11-fold. Actinobacterial spores were identified in 8 out of 14 samples. In vitro experiments revealed significant TLR2 activation in 9 out of 14 samples vs. significant TLR4 activation in all samples. Conclusion: The present study showed that the dust samples contained potentially health-impairing endotoxin, fungi, and actinobacterial levels. Furthermore, the sampled dust contained microbial components capable of inducing TLR activation and thus have the potential to evoke an inflammatory response in exposed individuals.

키워드

과제정보

Ragnhild Beate Strand Ostrem, and Wijnand Eduard at STAMI and Kari Kulvik Heidal, and Thea Haugesten Johansen, formerly at STAMI, are greatly acknowledged for participating in the fieldwork. Thanks are due to Oda Astrid Haarr Foss for guidance and help with ddPCR analyses. We also thank employers and employees at the participating facility for their cooperation.

참고문헌

  1. Lehtinen J, Tolvanen O, Nivukoski U, Veijanen A, Hanninen K. Occupational hygiene in terms of volatile organic compounds (VOCs) and bioaerosols at two solid waste management plants in Finland. Waste Manag 2013;33(4):964-73. https://doi.org/10.1016/j.wasman.2012.11.010
  2. Viegas S, Almeida-Silva M, Viegas C. Occupational exposure to particulate matter in 2 Portuguese waste-sorting units. Int J Occup Med Environ Health 2014;27(5):854-62. https://doi.org/10.2478/s13382-014-0310-8
  3. Rahkonen P. Airborne contaminants at waste treatment plants. Waste Manag Res 1992;10(5):411-21. https://doi.org/10.1016/0734-242X(92)90115-2
  4. Poulsen OM, Breum NO, Ebbehoj N, Hansen AM, Ivens UI, van Lelieveld D, et al. Collection of domestic waste. Review of occupational health problems and their possible causes. Sci Total Environ 1995;170(1-2):1-19. https://doi.org/10.1016/0048-9697(95)04524-5
  5. Abou-ElWafa HS, El-Bestar SF, El-Gilany AH, Awad El-Toraby Eel S. Respiratory disorders among municipal solid waste collectors in Mansoura, Egypt: a comparative study. Arch Environ Occup Health 2014;69(2):100-6. https://doi.org/10.1080/19338244.2012.744737
  6. Hagemeyer O, Bunger J, van Kampen V, Raulf-Heimsoth M, Drath C, Merget R, et al. Occupational allergic respiratory diseases in garbage workers: relevance of molds and actinomycetes. Adv Exp Med Biol 2013;788:313-20. https://doi.org/10.1007/978-94-007-6627-3_42
  7. Jahangiri M, Neghab M, Nasiri G, Aghabeigi M, Khademian V, Rostami R, et al. Respiratory disorders associated with occupational inhalational exposure to bioaerosols among wastewater treatment workers of petrochemical complexes. Int J Occup Environ Med 2015;6(1):41-9. https://doi.org/10.15171/ijoem.2015.458
  8. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4(7): 499-511. https://doi.org/10.1038/nri1391
  9. Liu G, Zhao Y. Toll-like receptors and immune regulation: their direct and indirect modulation on regulatory CD4+ CD25+ T cells. Immunology 2007;122(2):149-56. https://doi.org/10.1111/j.1365-2567.2007.02651.x
  10. Rasmussen PU, Phan HUT, Frederiksen MW, Madsen AM. A characterization of bioaerosols in biowaste pretreatment plants in relation to occupational health. Waste Manag 2021;131:237-48. https://doi.org/10.1016/j.wasman.2021.06.009
  11. Madsen AM, Frederiksen MW, Jacobsen MH, Tendal K. Towards a risk evaluation of workers' exposure to handborne and airborne microbial species as exemplified with waste collection workers. Environ Res 2020;183:109177. https://doi.org/10.1016/j.envres.2020.109177
  12. Viegas C, Caetano LA, Cox J, Korkalainen M, Haines SR, Dannemiller KC, et al. The effects of waste sorting in environmental microbiome, THP-1 cell viability and inflammatory responses. Environ Res 2020;185:109450. https://doi.org/10.1016/j.envres.2020.109450
  13. van der Wal J. Comparative measurements of the total dust concentration at the work place with different samplers - part I. Staum Reinhalt Luft 1983;43:4.
  14. Afanou KA, Straumfors A, Skogstad A, Nilsen T, Synnes O, Skaar I, et al. Submicronic fungal bioaerosols: high-resolution microscopic characterization and quantification. Appl Environ Microbiol 2014;80(22):7122-30. https://doi.org/10.1128/AEM.01740-14
  15. Straumfors A, Foss OAH, Fuss J, Mollerup SK, Kauserud H, Mundra S. The inhalable mycobiome of sawmill workers: exposure characterization and diversity. Appl Environ Microbiol 2019;85(21):1448.
  16. Vainio EJ, Hantula J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 2000;104(8):927. https://doi.org/10.1017/S0953756200002471
  17. Herlemann DPR, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 2011;5(10):1571-9. https://doi.org/10.1038/ismej.2011.41
  18. Brummelman J, Veerman RE, Hamstra HJ, Deuss AJM, Schuijt TJ, Sloots A, et al. Bordetella pertussis naturally occurring isolates with altered lipooligosaccharide structure fail to fully mature human dendritic cells. Infect Immun 2015;83(1):227-38. https://doi.org/10.1128/IAI.02197-14
  19. R Core Team. R. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.
  20. Kassambara A. rstatix: pipe-friendly framework for basic statistical tests; 2020.
  21. Wickham A. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.
  22. Habybabady RH, Sis HN, Paridokht F, Ramrudinasab F, Behmadi A, Khosravi B, et al. Effects of dust exposure on the respiratory health symptoms and pulmonary functions of street sweepers. Malays J Med Sci 2018;25(6):76-84. https://doi.org/10.21315/mjms2018.25.6.8
  23. Nordby KC, Fell AKM, Noto H, Eduard W, Skogstad M, Thomassen Y, et al. Exposure to thoracic dust, airway symptoms and lung function in cement production workers. Eur Respir J 2011;38(6):1278. https://doi.org/10.1183/09031936.00007711
  24. Melbostad E, Eduard W. Organic dust-related respiratory and eye irritation in Norwegian farmers. Am J Ind Med 2001;39:209-17. https://doi.org/10.1002/1097-0274(200102)39:2<209::AID-AJIM1008>3.0.CO;2-5
  25. Poulsen OM, Breum NO, Ebbehoj N, Hansen AM, Ivens UI, van Lelieveld D, et al. Sorting and recycling of domestic waste. Review of occupational health problems and their possible causes. Sci Total Environ 1995;168(1):33-56. https://doi.org/10.1016/0048-9697(95)04521-2
  26. The Norwegian Labour Inspection Authority. Regulations concerning action and limit values for physical and chemical agents in the working environment and classified biological agents FOR-2011-12-06 NO. 1358-ed.. Oslo, Norway: Ministry of Labour and Social Affairs; 2013.
  27. Johnston JR. Hazard prevention and control in the work environment: airborne dust. Protection of the human environment occupational health and environmental health Series, Geneva, 1999, World Health Organization WHO/SDE/OEH/99.14: English Only. Ann Occup Hyg 2000;44(5):405. https://doi.org/10.1016/S0003-4878(00)00023-5
  28. Krajewski JA, Tarkowski S, Cyprowski M, Szarapinska-Kwaszewska J, Dudkiewicz B. Occupational exposure to organic dust associated with municipal waste collection and management. Int J Occup Med Environ Health 2002;15(3):289-301.
  29. Park DU, Ryu SH, Kim SB, Yoon CS. An assessment of dust, endotoxin, and microorganism exposure during waste collection and sorting. J Air Waste Manag Assoc (1995) 2011;61(4):461-8. https://doi.org/10.3155/1047-3289.61.4.461
  30. Kumar S, Adhikari A. Dose-dependent immunomodulating effects of endotoxin in allergic airway inflammation. Innate Immun 2017;23(3):249-57. https://doi.org/10.1177/1753425917690443
  31. Eduard W, Pearce N, Douwes J. Chronic bronchitis, COPD, and lung function in farmers: the role of biological agents. Chest 2009;136(3):716-25. https://doi.org/10.1378/chest.08-2192
  32. Health Council of The Netherlands. Health risks associated with livestock farms; 2012. The Hague, The Netherlands.
  33. Kozajda A, Jezak K, Cyprowski M, Szadkowska-Stanczyk I. Inhalable dust, endotoxins and (1-3)-beta-d-glucans as indicators of exposure in waste sorting plant environment. Aerobiologia (Bologna) 2017;33(4):481-91. https://doi.org/10.1007/s10453-017-9484-4
  34. Rivera A, Ro G, Van Epps HL, Simpson T, Leiner I, Sant'Angelo DB, et al. Innate immune activation and CD4+ T cell priming during respiratory fungal infection. Immunity 2006;25(4):665-75. https://doi.org/10.1016/j.immuni.2006.08.016
  35. Viegas C, Faria T, de Oliveira AC, Caetano LA, Carolino E, Quintal-Gomes A, et al. A new approach to assess occupational exposure to airborne fungal contamination and mycotoxins of forklift drivers in waste sorting facilities. Mycotoxin Res 2017;33(4):285-95. https://doi.org/10.1007/s12550-017-0288-8
  36. Eduard W, Heederik D, Duchaine C, Green BJ. Bioaerosol exposure assessment in the workplace: the past, present and recent advances. J Environ Monit: JEM 2012;14(2):334-9. https://doi.org/10.1039/c2em10717a
  37. Heldal KK, Halstensen AS, Thorn J, Eduard W, Halstensen TS. Airway inflammation in waste handlers exposed to bioaerosols assessed by induced sputum. Eur Respir J 2003;21(4):641-5. https://doi.org/10.1183/09031936.03.00059702
  38. Madsen AM, Alwan T, Orberg A, Uhrbrand K, Jorgensen MB. Waste workers' exposure to airborne fungal and bacterial species in the truck cab and during waste collection. Ann Occup Hyg 2016;60(6):651-68. https://doi.org/10.1093/annhyg/mew021
  39. Degois J, Clerc F, Simon X, Bontemps C, Leblond P, Duquenne P. First metagenomic survey of the microbial diversity in bioaerosols emitted in waste sorting plants. Ann Work Expos Health 2017;61(9):1076-86. https://doi.org/10.1093/annweh/wxx075
  40. Veillette M, Bonifait L, Mbareche H, Marchand G, Duchaine C. Preferential aerosolization of Actinobacteria during handling of composting organic matter. J Aerosol Sci 2018;116:83-91. https://doi.org/10.1016/j.jaerosci.2017.11.004
  41. Sowani H, Kulkarni M, Zinjarde S, Javdekar V. Chapter 7 - Gordonia and related genera as opportunistic human pathogens causing infections of skin, soft tissues, and bones. In: Kon K, Rai M, editors. The microbiology of skin, soft tissue, bone and joint infections. 2. Academic Press; 2017. p. 105-21.
  42. Jiang X, Ellabaan MMH, Charusanti P, Munck C, Blin K, Tong Y, et al. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat Commun 2017;8(1):15784. https://doi.org/10.1038/ncomms15784
  43. Heldal KK, Madso L, Eduard W. Airway inflammation among compost workers exposed to actinomycetes spores. Ann Agric Environ Med 2015;22(2):253-8. https://doi.org/10.5604/12321966.1152076
  44. Chemidlin Prevost-Boure N, Christen R, Dequiedt S, Mougel C, Lelievre M, Jolivet C, et al. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS One 2011;6(9):24166.
  45. Zakeri A, Russo M. Dual role of toll-like receptors in human and experimental asthma models. Front Immunol 2018;9(1027).
  46. Netea MG, Van der Meer JWM, Sutmuller RP, Adema GJ, Kullberg B-J. From the Th1/Th2 paradigm towards a Toll-like receptor/T-helper bias. Antimicrob Agents Chemother 2005;49(10):3991-6. https://doi.org/10.1128/AAC.49.10.3991-3996.2005
  47. Poole JA, Romberger DJ. Immunological and inflammatory responses to organic dust in agriculture. Curr Opin Allergy Clin Immunol 2012;12(2):126-32. https://doi.org/10.1097/ACI.0b013e3283511d0e
  48. Boasen J, Chisholm D, Lebet L, Akira S, Horner AA. House dust extracts elicit Toll-like receptor-dependent dendritic cell responses. J Allergy Clin Immunol 2005;116(1):185-91. https://doi.org/10.1016/j.jaci.2005.03.015
  49. Rylander R, Michel O. Organic dust induced inflammation-role of atopy and TLR-4 and CD14 gene polymorphisms. Am J Ind Med 2005;48(4):302-7. https://doi.org/10.1002/ajim.20205