• Title/Summary/Keyword: Airbag inflators

Search Result 6, Processing Time 0.022 seconds

Optimizing Design of Side Airbag Inflator using DOE Method (실험계획법을 이용한 측면 에어백 인플레이터 최적 설계)

  • Kim, Byeong-Woo;Hu, Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1189-1195
    • /
    • 2011
  • For side airbag, the pipe type inflators have been wide used while the disk type inflators have been used for front airbag. For helping to prevent injury and death the airbag inflator system should be design with great care. The present study deal with optimizing the design of side airbag inflator by finite element analysis and design of experiment method. An optimization process was integrated to determine the optimum design variable values related to the side airbag inflator. Free shape optimization method has been carried out to find a optimal shape on an side airbag inflator model. Optimization of the air bag inflator was successfully developed using Sharpe optimization was carried out to find a new geometry. The improved results compared to the base design specification were achieved from design of experiment and optimization.

An Experimental Study on UNDEX Characteristics of Airbag Inflators (에어백 인플레이터의 수중폭발 특성에 대한 실험 연구)

  • Kim, Hyeongjun;Choi, Gulgi;Na, Yangsub;Park, Kyung Hoon;Chung, Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.439-446
    • /
    • 2017
  • This paper deals with an experimental study of the dynamics of an underwater bubbles and shock waves, generated by rapid underwater release of highly compressed gas. Aribag inflators, which are used for automobile's airbag system, are used to generate the extremely-rapid underwater gas release. Experimental studies of the complex underwater bubble dynamics as well as underwater shock wave were carried out in a specifically designed cylindrical water tank. The water tank is equipped with a high-speed camera and pressure sensors. The high-speed camera was used to capture the expansion and collapse of the gas bubble created by inflators, while pressure sensors was used to measure the underwater shock propagation and magnitudes. The experimental results were compared against the results of explosion of pentolite explosive. Several physical phenomena that has been observed and discussed, which are different from the explosive underwater explosion.

Evaluation and Testing of out of Position for Airbag Design (에어백 설계를 위한 비정상자세 조건의 시험과 평가)

  • 전상기;이현중;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.108-117
    • /
    • 2003
  • Development of advanced restraint system challenges both restraint and automobile manufacturers to come up with proper airbag design to reduce occupant out-of-position related injury. The important component of the advanced restraint system is the multi stage inflator. The multi stage inflator can independently control two or more airbag inflation stages to maximize occupant protection. The objective of this research is to develop relationship between airbag inflation characteristics, the occupant positions and the airbag design variables. The tests are conducted using five kinds of inflators, two kinds of airbag cushion folding methods and two kinds of tear lines. In the case of inflator, the out-of-position tests are performed with a traditional inflator, a depowered inflator and a dual stage inflator. And the efficiency and injury mechanism are evaluated by analyzing the injury pulses and values. Using this relationship, airbag design guideline is established for airbag aggressivity thresholds and the risk of injury is identified according to occupant positions.

Validation of underwater explosion response analysis for airbag inflator using a fluid-structure interaction algorithm

  • Lee, Sang-Gab;Lee, Jae-Seok;Chung, Hyun;Na, Yangsup;Park, Kyung-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.988-995
    • /
    • 2020
  • Air gun shock systems are commonly used as alternative explosion energy sources for underwater explosion (UNDEX) shock tests owing to their low cost and environmental impact. The airbag inflator of automotive airbag systems is also very useful to generate extremely rapid underwater gas release in labscale tests. To overcome the restrictions on the very small computational time step owing to the very fine fluid mesh around the nozzle hole in the explicit integration algorithm, and also the absence of a commercial solver and software for gas UNDEX of airbag inflator, an idealized airbag inflator and fluid mesh modeling technique was developed using nozzle holes of relatively large size and several small TNT charges instead of gas inside the airbag inflator. The objective of this study is to validate the results of an UNDEX response analysis of one and two idealized airbag inflators by comparison with the results of shock tests in a small water tank. This comparison was performed using the multi-material Arbitrary Lagrangian-Eulerian formulation and fluid-structure interaction algorithm. The number, size, vertical distance from the nozzle outlet, detonation velocity, and lighting times of small TNT charges were determined. Through mesh size convergence tests, the UNDEX response analysis and idealized airbag inflator modeling were validated.

A Study on the Characteristics of Underwater Explosion for the Development of a Non-Explosive Test System (무폭약 시험 장치 개발을 위한 수중폭발 특성에 대한 연구)

  • Lee, Hansol;Park, Kyudong;Na, Yangsub;Lee, Seunggyu;Pack, Kyunghoon;Chung, Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.322-330
    • /
    • 2020
  • This study deals with underwater explosion (UNDEX) characteristics of various non-explosive underwater shock sources for the development of non-explosive underwater shock testing devices. UNDEX can neutralize ships' structure and the equipment onboard causing serious damage to combat and survivability. The shock proof performance of naval ships has been for a long time studied through simulations, but full-scale Live Fire Test and Evaluation (LFT&E) using real explosives have been limited due to the high risk and cost. For this reason, many researches have been tried to develop full scale ship shock tests without using actual explosives. In this study, experiments were conducted to find the characteristics of the underwater shock waves from actual explosive and non-explosive shock sources such as the airbag inflators and Vaporizing Foil Actuator (VFA). In order to derive the empirical equation for the maximum pressure value of the underwater shock wave generated by the non-explosive impact source, repeated experiments were conducted according to the number and distance. In addition, a Shock Response Spectrum (SRS) technique, which is a frequency-based function, was used to compare the response of floating bodies generated by underwater shock waves from each explosion source. In order to compare the magnitude of the underwater shock waves generated by each explosion source, Keel Shock Factor (KSF), which is a measure for estimating the amount of shock experienced by a naval ship from an underwater explosionan, was used.