• Title/Summary/Keyword: AirSensor

Search Result 1,182, Processing Time 0.026 seconds

MEMS/Nano-technologies for Smart Air Environmental Monitoring Sensors

  • Park, Inkyu;Yang, Daejong;Kang, Kyungnam
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.281-286
    • /
    • 2015
  • The importance of air quality monitoring is rapidly increasing. Even though state-of-the-art air quality monitoring technologies such as mass spectrometry, gas chromatography, and optical measurement enable high-fidelity measurement of air pollutants, they cannot be widely used for portable or personalized platforms because of their high cost and complexity. Recently, personalized and localized environmental monitoring, rather than global and averaged environmental monitoring, has drawn greater attention with the advancement of mobile telecommunication technologies. Here, micro- and nano-technologies enable highly integrated and ultra-compact sensors to meet the needs of personalized environmental monitoring. In this paper, several examples of MEMS-based gas sensors for compact and personalized air quality monitoring are explained. Additionally, the principles and usage of functional nanomaterials are discussed for highly sensitive and selective gas sensors.

Air Pollution Monitoring RF-Sensor System Trackable in Real Time (실시간 위치탐지 기능을 갖춘 대기오염 모니터링 RF-Sensor 시스템)

  • Kim, Jin-Young;Cho, Jang-Ho;Jeon, Il-Tae;Jung, Dal-Do;Kang, Joon-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.21-28
    • /
    • 2010
  • Air pollution monitoring has attracted a lot of interests because it affects directly to the human life quality. The most of the current air pollution monitoring stations use the expensive and bulky instruments and are only installed in the specific area. Therefore, it is difficult to install them to as many places as people need. In this work, we constructed a low price and small size Radio Frequency(RF) sensor system to solve this problem. This system also had the measurement range similar to the ones used in the air pollution forecast systems. This system had the sensor unit to measure the air quality, the central processing unit for air quality data acquisition, the power unit to supply the power to every units, and the RF unit for the wireless transmission and reception of the data. This system was easy to install in the field. We also added a GPS unit to track the position of the RF-sensor in real time by wireless communication. For the various measurements of the air pollution, we used CO, $O_3$, $NO_2$ sensors as gas sensors and also installed a dust sensor.

The Unconstrained Sleep Monitoring System for Home Healthcare using Air Mattress and Digital Signal Processing (공기 매트리스와 디지털 신호처리를 이용한 홈헬스케어용 무구속 수면 모니터링 시스템)

  • Chee, Young-Joon;Park, Kwang-Suk
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.493-496
    • /
    • 2005
  • For home healthcare, the unconstrained measurement of physiological signal is highly required to avoid the inconvenience of users. The recording and analysis of the fundamental parameters during sleep like respiration and heart beat provide valuable information on his/her healthcare. Using the air mattress sensor system, the respiration and heart beat movements can be measured without any harness or sensor on the subject's body. The differential measurement technique between two air cells is adopted to enhance the sensitivity. The balancing tube between two air cells is used to increase the robustness against postural changes during the measurement period. The meaningful frequency range could be selected by the pneumatic filter with balancing tube. ECG (Electrocardiography) and respiration sensor (plethysmography) were measured for comparison with the signal from air mattress. To extract the heart beat information from air pressure sensor, digital signal processing technique was used. The accuracy for breathing interval and heart beat monitoring was acceptable. It shows the potentials of air mattress sensor system to be the unconstrained home sleep monitoring system.

  • PDF

Environmental Monitoring Using Comfort Sensing System

  • Na, Dae-Suk;Kang, Jeong-Ho;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.24-33
    • /
    • 2003
  • This research is about a comfort sensing system for human environmental monitoring using a one-bodied humidity and temperature sensor and an air flow sensor. The thermal comfort that a human being feels in indoor environment has been known to be influenced mostly by six parameters, i.e. air temperature, radiation, air flow, humidity, activity level and clothing thermal resistance. Considering an environmental monitoring, we have designed and fabricated a one-bodied humidity and temperature sensor and an air flow sensor that detect air relative humidity, temperature and air flow in human environment using surface micromachining technologies. Micro-controller calculates a PMV (predicted mean vote) and CSV (comfort sensing vote) with sensing signals and display a PMV on LCD (liquid crystal display) for human comfort on indoor climate. Our work has demonstrated that a comfort sensing system can provide an effective means of measuring and monitoring the indoor comfort sensing index of a human being. Experimental results with simulated environment clearly suggest that our comfort sensing system can be used in many applications such as air conditioning system, feedback controlling in automobile, home and hospital etc..

Development of a Grain Moisture Content Measurement Sensor for Automatic Control of Rough Rice Drying by Natural Air (미곡(米穀) 상온통풍건조(常温通風乾燥)의 자동제어용(自動制御用) 곡물(穀物) 함수율(含水率) 측정(測定)센서 개발(開發))

  • Kim, T.K.;Chang, D.I.;Kim, M.S.;Kim, T.K.;Hong, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.3
    • /
    • pp.52-58
    • /
    • 1988
  • This study was conducted to develop a grain moisture content measurement sensor for automatic control of rough rice drying by natural air. For the above objective, the electrod type sensor was designed and tested. The sensor was able to produce electrical resistance which changes with moisture content of grain. An A/D converter and a micro-computer wed for processing measurement data of sensor. The developed sensor satisfied most design requirements and the results of statistical analysis show that there it no difference between the measurement method of sensor developed and of the dry-oven. Using the developed sensor and measurement system, we are able to measure moisture content of rough rice automatically in drying by natural air.

  • PDF

Fuel Injection Control of Vehicles Using Fuzzy Control Technique (퍼지 제어 기법을 이용한 차량의 연료 제어)

  • Kim, Kwang-Baek;Woo, Young-Woon;Ha, Sang-An
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1013-1018
    • /
    • 2007
  • In general, there are many sensors for fuel injection control such as an air flow sensor, an air intake temperature sensor, a cooling water temperature sensor, a throttle position sensor, and a motor position sensor. In this paper, we proposed a method for controlling the amount of fuel consumption in cars using fuzzy control technique by temperature change of an air intake temperature sensor and air-fuel ratio, the ratio of air and fuel mixture. In the proposed method, the amount of fuel injection is controlled by fuzzy membership functions and fuzzy inference rules established for air-fuel ratio, air intake temperature, and final fuel compensation, after computing air-fuel values using each amount of air intake and each amount of fuel injection. We verified that the proposed method is more efficient than conventional methods in fuel injection control from the results of the simulation program.

Real-time Air Quality Monitoring System Based on Wireless Network (무선네트워크기반 공기질 실시간 모니터링 시스템)

  • Paik, Seung Hyun;Lee, Jun Yeong;Jung, Sang Woo;Park, Hong Bae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.143-151
    • /
    • 2016
  • In this paper, a real-time air quality monitoring system based on wireless network is designed and implemented for industrial park or multiuse facilities. The existing gas detector is high price and hard to apply the remote monitoring system. On the other hand, demand for air quality monitoring is increasing because of industrial gas accident, air pollution, and so on. In Korea, indoor air regulation was established by law. According to indoor air regulation, CO2, CO, and NO2 are important gases as the air quality standard. So we study the gas detector for indoor air quality and the wireless network system. The wireless network consist of sensor network and WCDMA to apply various place. To verify the performance of the implemented gas detector, the gas measurement experiment is performed in laboratory environment by using the realized gas detecting wireless sensor node. And we evaluate the experiment results.

NDIR Multi-Gas Measurement System for Air Quality based on Wireless Sensor Network (무선센서네트워크 기반 공기질 측정을 위한 비분산적외선 복합가스측정시스템)

  • Paik, Seung Hyun;Lee, Jun Yeong;Jung, Sang Woo;Park, Hong Bae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.299-304
    • /
    • 2016
  • As public interest in air quality and environment problem is increasing, many researches are being carried out the gas measurement system. Especially, Non-dispersive infrared (NDIR) measurements using Beer-Lambert gas sensing principle with very high selectivity and long life time are noted for reliable method. It is possible to detect various gases such as carbon dioxide (CO2), carbon monoxide (CO), and nitrogen dioxide (NO2), but many researches are mostly concentrated on CO2 sensor. The multi-gas measuring instrument is high price and unwieldy, therefore it is not suitable for wide area required numerous instrument. So we study the NDIR multi-gas measurement system for air quality based on wireless sensor network, and experiment the realized measurement system.

A Study on the Flow Field Characteristics of Air Induction System for Reducing the Signal-to-Noise in the MAFS Output

  • Yoo, Seoung-Chool
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • This study presents the flow visualization results, velocity and turbulence intensity measurements made within an air filter cover and entry region of a mass air flow sensor (MAFS) which is used in an induction system of 3.8L engine. Flow structure in two air filter cover assemblies were examined. The first was a clear plastic replica of the production cover while the second was a modified clear plastic cover with a geometry configured to reduce fluctuations. High speed flow visualization and laser doppler velocimetry (LDV) systems were used to reveal and analyze the flow field characteristics encountered in the sensor design process under steady flow conditions. A 40-watt copper vapor laser was used as a light source. Its beam is focused down to a sheet of light approximately 1.5mm thick. The light scattered off the particles was recorded by a 16mm high speed rotating prism camera at 5000 frames per second. A comparison of the flow patterns and LDV measurements in the original and modified air filter covers is presented to illustrate the controlling effect of the cover design on the turbulence structure formation near the bypass and on the sensor output signal. In both axial and radial planes of the main passage it was found that the turbulence flow pattern is remarkably influenced by the air filter cover and main passage configuration.

  • PDF

Performance Improvement of Air Conditioner Network System using Wireless Sensors Through System Performance Index and Dynamic Power Distribution Control (시스템 성능 지수 및 동적 전력분산 제어를 통한 무선센서를 이용한 에어컨 네트워크 시스템의 성능 개선)

  • Choi, Ho-seek;Kwon, Woo-hyen;Yoon, Byung-keun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.64-70
    • /
    • 2019
  • Wireless sensors have been developed in numerous ways for enhancing the convenience of installation, management and maintenance of sensors. Energy harvesting wireless sensors, which can collect energy from the external environment for permanent usage without the need of recharging and exchanging batteries, have been developed and employed used in Internet of Things and at various industrial sites. Energy harvesting wireless sensors are significantly affected by the sensor lifespan to sudden variation in the external environment. Furthermore, reduction in the sensor operating timespan can greatly affect the characteristics of the devices connected through a network. In this paper, a system performance index is proposed that can comprehensively evaluate the lifespan of a solar cell wireless sensor, determine the characteristics of devices connected to the associated network, and recommend dynamic power distribution control for improving the system performance index. Improvement in the system performance index was verified by applying the proposed dynamic power distribution control to an air conditioner network system using a solar cell wireless sensor. Obtained results corroborate that the dynamic power distribution control can extend the lifespan of the incorporated wireless sensor and reduce the air conditioner's power consumption.