• Title/Summary/Keyword: Air-to-air heat pump

Search Result 673, Processing Time 0.023 seconds

A study on the application Heat Pump to Rolling Stock Air conditioner (히트펌프식 냉난방장치의 철도차량 적용에 관한 연구)

  • Kweon, Tae-Kyun;Song, Young-Jeong;Jeong, Gwang-Moo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1689-1696
    • /
    • 2008
  • Heat pumps transfer heat by circulating a substance called a refrigerant through a cycle of evaporation and condensation. But Heat pumps system by only using heat-source is not efficient. Because the mean temperature of North Korean winter season is low, economy of air heat-source heat pump descend. This paper is practiced the simulation on evaluation criteria for Heat pump heating and cooling systems to Rolling Stock. Efficiency of the heat pump in order improving from certainly the development of the technique will be able to prevent a freezing actual condition must proceed. As a result, Below $-10^{\circ}C$ used heating and cooling systems of heat pump format even in cold winter season and is serviceable confirmed with heat source supply circle of the Rolling Stock.

  • PDF

Feasibility study of ground source heat pump system according to the local climate condition (지역 기후 특성에 따른 지열시스템의 도입경제성 차이에 관한 연구)

  • Nam, Yujin
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.127-131
    • /
    • 2014
  • The ground source heat pump (GSHP) system is a kind of the temperature differential energy system using relatively stable underground temperature as heat source of space heating and cooling. This system can achieve higher performance of system than it of conventional air source heat pump systems. However, its superiority of the system performance is different according to installation location or local climate, because the system performance depends on the underground condition which is decided by annual average air temperature. In this study, in order to estimate the feasibility of the ground source heat pump system according to the local climate, numerical simulation was conducted using the ground heat transfer model and the surface heat balance model. The case study was conducted in the condition of Seoul, Daejeon, and Busan, In the result, the heat exchange rate of Busan was 34.33 W/m as the largest in heating season and it of Seoul was 40.61 W/m as the largest in cooling.

Verification experiment of a ground source multi-heat pump at heating season (지열원 멀티 히트펌프의 동절기 난방성능에 관한 실증 연구)

  • Choi, Jong-Min;Lim, Hyo-Jae;Kang, Shin-Hyung;Choi, Jae-Ho;Moon, Je-Myung;Kwon, Young-Seok;Kwon, Hyung-Jin;Kim, Rock-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.52-57
    • /
    • 2009
  • This paper describes the multi-heat pumps applied in an ground source heat pump system for an actual building. The performance of a ground source multi-heat pump installed in the field was investigated at heating season. The average COP of the systems with single U-tube and double tube type GLHXs were 4.8 and 5.0, respectively. It is needed to investigate the long term performance of double tube type GLHX, because the reduction of inlet temperature of OD HX for this GLHX was larger than it for U-tube GLHX.

  • PDF

Performance evaluation of R22 alternative refrigerants (R22 대체냉매의 성능 평가)

  • 송용재;박봉진;정동수;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.292-302
    • /
    • 1998
  • In this study, 14 refrigerant mixtures composed of R32, R125, R134a, R143a, R152a, and R1270(Propylene) were tested in a breadboard heat pump in an attempt to replace R22 used in most of the residential air conditioners and heat pumps. The heat pump was of 1 ton capacity and water was employed as the secondary heat transfer fluids. All tests were conducted under ARI test A condition. Ternary mixtures composed of R32, R125, and R134a were shown to have 4∼5% higher COP and capacity than R22 and hence they seem to be very promising candidates to replace R22. On the other hand, ternary mixtures containing R125, R134a, and R152a have lower COP and capacity than R22. R32/R134a binary mixtures show a 7% increase in COP and have the similar capacity to that of R22 and hence they are also good candidates to replace R22. Special care must be exercised when a suction line heat exchanger is used with these mixtures in air conditioners. Finally, the compressor discharge temperatures of all mixtures tested were lower than those of R22 by 15.g∼34.7t, which indicates that these mixtures would offer better system reliability and longer life time than R22.

  • PDF

Performance Comparison of Supercritical Heat Pump for a Variety of Refrigerants (다양한 냉매를 적용한 초임계 히트펌프의 성능 비교)

  • Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan;Jeon, Min-Ju
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.42-47
    • /
    • 2014
  • In this paper, the cycle performance analysis for the COP of supercritical heat pump using various refrigerants is presented to offer the basic design data for the operating parameters of the system. The working fluids are R134a, R22, R32, R290, R600, R600a, R1270 and R744. The operating parameters considered in this study include superheating degree of evaporator, temperature of gas cooler inlet and outlet, compressor efficiency and evaporating temperature in the supercritical heat pump system. The main results were summarized as follows : Superheating degree, temperature of gas cooler inlet and outlet, compressor efficiency and evaporating temperature of supercritical heat pump system have an effect on the COP of this system. With a thorough grasp of these effect, it is necessary to design the supercritical heat pump using R134a. And, in comparison of COP of supercritical heat pump using various refrigerants, R32 and R600 is the highest, and R744 is the lowest among other refrigerants. From these results, it is confirmed that the COP of supercritical heat pump using R744 is higher than that using freon refrigerants such as R32 and R134a.

Study on Energy Saving Properties by using City- Water as a Heat Source for Dwellings

  • Chung, Yong-Hyun;Mizuno, Minoro;Simoda, Yoshiyuki;Kum, Jong-Soo;Choi, Kwang-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.168-176
    • /
    • 1998
  • A simulation study was conducted to use city-water which is thermally regulated by unused energy as a heat source for urban dwellings. This study utilized multiple heat pump system using the city-water as a heat source and suggested a method of reducing the heat load of hot water supply. The simulation was done to calculate the energy savings at a dwelling for a year. The relation between the controlled temperature of city-water. and electric energy in all seasons was also investigated. Furthermore, it has been found that the controlled water system can lead to considerable energy savings and decrease environmental load such as sensible waste heat which otherwise would form heat islands.

  • PDF

Economical Analysis of a Small Capacity Heat Pump utilizing Heat Sources of Air, Geothermal and Underground Water Tank using Dynamic Simulation (동특성 시뮬레이션을 이용한 공기, 지열 및 지하 저수조 열원 소형 열펌프의 경제성 분석)

  • Yang, Chul-Ho;Kim, Youngil;Chung, Kwang-Seop
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.4
    • /
    • pp.17-23
    • /
    • 2012
  • Due to reinforcement of international environment regulation and high oil prices, interest in renewable energy is growing. Countries participating in UNFCCC are continuously putting efforts in reducing greenhouse gas after enforcing Kyoto Protocol into effect on Feb, 2005. Energy used in buildings, which relies heavily on fossil fuel accounts for about 24% of total energy consumption. In this study, air, geothermal and water source heat pump systems for an 322 $m^2$ auditorium in an office building is simulated using TRNSYS version 17 for comparing energy consumptions. The results show that energy consumptions of air, geothermal and water source heat pumps are 14,485, 10,249, and 10,405 kWh, respectively. Annual equal payments which consider both initial and running costs become 5,734,521, 6,403,257 and 5,596,058 Won. Thus, water source heat pump is the best economical choice.

Study on the Performance Characteristics of the Solar Hybrid System with Heat Pump Operating Temperature during Winter Season (겨울철 열펌프 작동온도에 따른 태양열 하이브리드 시스템의 성능특성에 관한 연구)

  • Kim, Won-Seok;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.821-827
    • /
    • 2010
  • Study on the performance characteristics of the solar hybrid system with heat pump operating temperature during winter season has performed by using an experimental test. The system performance and operating characteristics with the heat pump operating temperature, hour and load condition were investigated and analyzed. As a result, the hot water temperature was significantly affected by the heat pump operating temperature at the morning(time 1) and noon(time 2). However, hot water temperature was set by the radiation quality and collecting operation hour at the afternoon(time 3). In addition to the solar fraction was decreased for the high heat pump operating temperature because the heat pump operated with a long operating time and short operating period.

A Study on the Performance Improvement of a Simultaneous Heating and Cooling Water Source Heat Pump System by Controlling of the Refrigerant Flow Rate in an Outdoor Unit (수열원 냉난방 동시형 히트펌프 시스템의 실외 열교환기 유량제어를 통한 성능개선에 관한 연구)

  • Bae, Heung Hee;Lee, Dong Hyuk;Lee, Sanghun;Kim, Byengsoon;Ahn, Young Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.131-136
    • /
    • 2013
  • The present study has conducted cycle design and control technology of a water source VRF heat pump system. Previously, study of a simultaneous heating and cooling in an air source VRF heat pump system has been conducted. However, performance data and design methods for simultaneous heating and cooling in a water source VRF heat pump system are limited in the literature, due to various system parameters and operating conditions. In this study, the operating characteristics and performances of a simultaneous heating and cooling heat pump system are carried out, in simultaneous operation modes. Control logics of an EEV are developed for flow rate control to the outdoor unit, and are verified. When the control logics are applied, the simultaneous cooling and heating performances are sufficiently achieved, and system COPs are increased by up to 23.4%.

The Performance Improvement of a Gas Injection Heat Pump with a Flash Tank (기액분리기를 적용한 가스 인젝션 히트펌프의 성능 향상에 관한 실험적 연구)

  • Son, Kilsoo;Kim, Dongwoo;Choi, Sungkyung;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.297-305
    • /
    • 2017
  • Air-source heat pumps are widely used in residential heating systems. However, the decrease in the capacity of the heat pump is unavoidable when operating at very low and high ambient temperatures. The vapor injection technique is considered a promising technology to overcome this problem. Recent research on vapor injection cycles have mainly adopted a scroll compressor with an internal heat exchanger at severe operating conditions. This study measured the COP and EER of a gas injection heat pump using a flash tank with an inverter-driven rotary compressor at severe operating conditions. Compared to non-injection heat pumps, the heating capacity and COP of the gas injection heat pump improved up to 15% and 2.9%, respectively, at outdoor temperatures of $-10^{\circ}C$ to $7^{\circ}C$. The cooling capacity of the gas injection heat pump was 11% higher than the non-injection heat pump at an outdoor temperature of $35^{\circ}C$. At the same time, the EER of the gas injection heat pump was similar to that of the non-injection heat pump.