• 제목/요약/키워드: Air-to-Water Heat Pump System

검색결과 224건 처리시간 0.027초

지열원 히트펌프시스템의 실사용을 통한 난방성능연구 (Heating Performance of a Ground Source Heat Pump System through Actual Operation)

  • 구경민;정영만;황유진;이재근;장세용;김인규;진심원;이동혁
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.788-793
    • /
    • 2008
  • This paper presents the heating performance of a water-to-refrigerant type ground source heat pump system (GSHP) installed in a school building. The evaluation of the heating performance has been conducted under the actual operating conditions of GSHP system in the winter. Ten units with the capacity of 10 HP each were installed in the building. Also, a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth was constructed for the GSHP system. For analyzing the heating performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the water temperature of inlet and outlet of the ground heat exchanger. Simultaneously, the heating capacity and the input power were evaluated for determining the heating performance of the GSHP system. The average heating coefficient of performance (COP) of the heat pump was found to be 5.1 at partial load of 46.9%, while the overall system COP was found to be 4.2.

  • PDF

봄철 태양열 하이브리드 시스템의 성능특성 연구 (Study on the Performance Characteristics of Hybrid Solar Heating System during Spring Season)

  • 표종현;김원석;조홍현;박차식
    • 설비공학논문집
    • /
    • 제22권5호
    • /
    • pp.296-303
    • /
    • 2010
  • An experimental study was carried out to investigate performance characteristics of the hybrid solar system during spring season. The system operating condition, each load, and heat pump performance were analyzed with the cloud cover. As a results, the collector heat, solar fraction, and hot water load were decreased with a rise of the cloud. The heating load was considerably effected by the ambient temperature regardless of the cloud cover. Besides, the temperature of hot water increased with the solar radiation. The COP of the heat pump was significantly influenced by the ambient temperature, that was 2.09~2.46 for gray day and 1.94~2.71 for fair day, respectively.

히트펌프 성능 평가 동향과 국내 지열원 히트펌프 성능 평가 규격 및 제도 분석 (Analysis on the Performance Evaluation Trends of Heat Pumps and the Test Standards of a Geothermal Heat Pump in Korea)

  • 강신형;최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제13권4호
    • /
    • pp.31-38
    • /
    • 2017
  • The heating and cooling air conditioning field has been increasing the problems of energy consumption and global warming in the world. A geothermal heat pump has been known as one of the highest efficient heating and cooling system. In this study, the analysis about the test standards of the geothermal heat pump of the Republic of Korea was executed. From the research, the following results were given. It is needed to address the domestic test standard for direct heat exchange geothermal heat pump. Water to air multi geothermal heat pump test standard was only developed in Korea. The test standard to calculate a seasonal energy efficiency ratio for cooling period and heat seasonal performance factor for heating period should be newly developed to estimate actual annual energy consumption and $CO_2$ emission.

육상 수조식 양식장의 해수 열원 히트펌프 시스템 적용을 위한 열부하 분석 (Thermal load analysis of tank culture system for applying seawater source heat pump)

  • 윤민기;김태훈;정석권
    • 수산해양기술연구
    • /
    • 제59권2호
    • /
    • pp.155-163
    • /
    • 2023
  • This study deals with the maximum thermal load analysis and optimal capacity determination method of tank culture system for applying seawater source heat pump to save energy and realize zero energy. The location of the fish farm was divided into four sea areas, and the heat load in summer and winter was analyzed, respectively. In addition, two representative methods, the flow-through aquaculture system and the recirculation aquaculture system were reviewed as water treatment methods for fish farms. In addition, the concept of the exchange rate was introduced to obtain the maximum heat load of the fish farms. Finally, power consumption for heat pumps was analyzed in the view point of sea areas, tank capacity, and exchange rate based on the calculated maximum thermal load.

주거용 태양열 하이브리드 이산화탄소 열펌프 시스템의 성능특성에 관한 해석적 연구 (Simulation Study on the Performance Characteristics in the Solar Hybrid R744 Heat Pump for Residential Applications)

  • 김원석;조홍현
    • 설비공학논문집
    • /
    • 제23권10호
    • /
    • pp.678-686
    • /
    • 2011
  • Simulation study on the operating characteristics in the solar hybrid R744 heat pump system for residential applications was carried out with heat pump operating temperature, outdoor temperature and solar radiation. As a result, collector operating time is decreased by 1.5 hours due to the increase of water temperature in the heat storage tank when the heat pump operating temperature rises. Heat pump operating time is reduced by 19.4% owing to the high temperature of a heat storage tank. Besides, indoor heating time is decreased from 10.3 to 5.5 hours as the indoor temperature increases from $3^{\circ}C$ to $11^{\circ}C$. In addition to, when the solar radiation rises from 10 to 20 MJ/$m^2$, the maximum outlet temperature of a solar collector is increased from $65^{\circ}C$ to $71^{\circ}C$.

전동 워터펌프의 열유동 특성 해석에 관한 연구 (A Study on Thermo-flow Characteristics Analysis of Electric Water Pump)

  • 김성철;송형근
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.95-101
    • /
    • 2012
  • An electric water pump for engine cooling system has an advantage which particularly in the cold start, the use of the electric water pump saves fuel and leads to a corresponding reduction in emissions. The canned type electric water pump without mechanical sealing elements was selected to meet the requirements for operational reliability and life. However, the electric water pump for internal combustion engine generates much more heat loss than for hybrid electric vehicle since it is operated by the electric power of high current and low voltage. In this study, the fluid flow and thermal characteristics of the canned type electric water pump as an inverter integrated water pump has been investigated under the effects of heat generation. The analysis conditions such as outdoor air temperature of $125^{\circ}C$, water pump speed of 6000 rpm, coolant temperature of $106^{\circ}C$ and coolant flow rate of 120 L/min was used as a standard condition. Therefore, flow fields and temperature distribution inside the water pump were obtained. Also, we checked the feasibility of the canned type for the electric water pump in comparison with the mechanical seal type.

EXHAUST GAS HEAT RECOVERY SYSTEM FOR PLANT BED HEATING IN GREENHOUSE PRODUCTION

  • Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.;Kang, G.C.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.639-646
    • /
    • 2000
  • Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season in Korea. However, since the heat efficiency of the heater is about 80%, considerable unused heat in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust gas heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The system consists of a heat exchanger made of copper pipes, ${\phi}\;12.7{\times}0.7t$ located inside the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tame The total heat exchanger area is $1.5m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to performance test it can recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690{\ell}$/hr from the waste heat discharged. The exhaust gas temperature left from the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{circ}C$ from $21^{circ}C$ at the water flow rate of $690{\ell}$/hr. And, the condensed water amount varies from 16 to $43m{\ell}$ at the same water circulation rates. This condensing heat recovery system can reduce boiler fuel consumption amount in a day by 34% according to the feasibility study of the actual mimitomato greenhouse. No combustion load was observed in the hot air heater.

  • PDF

LCC 분석을 이용한 중앙공급식 공동주택의 수축열식 지열원 히트펌프시스템의 적용연구 (Application study of heat storage type GSHP system in Apartment building with central cooling and heating facilities using life cycle cost analysis)

  • 이상훈;박종우;조성환
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1497-1502
    • /
    • 2009
  • The present study has been conducted economic analysis of heat storage type ground source heat pump system(HSGSHP) and normal ground source heat pump (GSHP) and central boiler system with individual air conditioning facility which are installed at the same building in the shared an apartment house. Cost items, such as initial construction cost, annual energy cost and maintenance cost of each system are considered to analyze life cycle cost (LCC) and simple payback period (SPP) with initial cost different are compared. The initial cost is a rule to the Government basic unit cost of production. LCC applied present value method is used to assess economical profit of both of them. Variables used to LCC analysis are prices escalation rate and interest rate mean values of during latest 10 years. The LCC result shows that HSGSHP (1,351,000,000won) is more profitable than central boiler system with individual air conditioning facility by 86.7% initial cost. And SPP appeared 8.0 year overcome the different initial cost by different annual energy cost.

  • PDF

열펌프를 이용한 온돌 난방 시스템 - 열펌프와 석유보일러의 소요에너지 비교 - (Ondol Heating System Using Heat Pump - Comparison of Energy Consumption between the Heat Pump and the Oil Boiler -)

  • 김현철;송현갑
    • Journal of Biosystems Engineering
    • /
    • 제24권4호
    • /
    • pp.351-358
    • /
    • 1999
  • In these days, we are faced to a couple of difficult problems, the one is the unstable price of the energy due to the shortage of fossil fuel resources and the other is the serious environmental pollution from the excessive consumption of fossil fuel. In order to save the thermal energy for the house heating, in this study the heat pump using the natural thermal energy resources was provided for Ondol heating and the thermal energy consumption of the heat was compared to that of oil boiler. The results could be summarized as follows: 1. In the Ondol room the temperature difference between the Ondol surface and room air was about 5∼$10^{\circ}C$ in accordance with the ambient temperature. 2. The Ondol room heating efficiency of the heat pump with compressor of 2PS was the highest at the water flow rate of 200 l/h. 3. The energy saving rate of the heat pump to the oil boiler for heating the Ondol system was 19.3%. 4. The Ondol heating cost of the heat pump was less 20.6% than that of oil boiler when oil price was 478 won/l.

  • PDF

열펌프의 정량적 특허기술 분석에 관한 연구 (An Analysis of the Patents for Heat Pumps)

  • 최종민;김용찬;천덕우;심윤희;이상혁;곽재수
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.808-815
    • /
    • 2005
  • A technical analysis was conducted to predict the development trends for heat pump system. This study was based on submitted patents from 1983 to 2002 in Korea, USA, and Japan. The total number of raw data from the registered database was 19,261 and the obtained data to be analyzed through the filtering process was 5,143. Japan's technical development for the heat pump system was more dominant than the other countries. Approximately $54\%$ of the total patents related with the heat pump system was registered by Japan. The number of patents for the heat pump system registered by Korea was very low in 1980's, but it increased rapidly in 1990's. As a result, the number of patents applied by Korea was $21\%$ of all patents. When the patent was categorized into compression, absorption/ad-sorption, and chemical type, the technology of compression type made up over $80\%$ in each country. Approximately $93\%$ of the patents surveyed in this study was developed for air or water source heat pumps because of easy applications compared with other heat sources. The $89\%$ of all patents was applied by companies when applicants were divided into three groups of company, individual, and the others (national institute, university, and so on).